cryb-to/lib/digest/cryb_sha224.c

298 lines
8.2 KiB
C
Raw Normal View History

2014-07-11 13:33:58 +00:00
/*-
* Copyright (c) 2005-2013 Colin Percival
* Copyright (c) 2017 Dag-Erling Smørgrav
2014-07-11 13:33:58 +00:00
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
2014-07-11 13:33:58 +00:00
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "cryb/impl.h"
#include <stdint.h>
#include <string.h>
#include <cryb/bitwise.h>
#include <cryb/endian.h>
#include <cryb/memset_s.h>
2014-07-11 13:33:58 +00:00
#include <cryb/sha224.h>
2014-07-11 13:33:58 +00:00
/* Elementary functions used by SHA224 */
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
#define SHR(x, n) (x >> n)
#define S0(x) (ror32(x, 2) ^ ror32(x, 13) ^ ror32(x, 22))
#define S1(x) (ror32(x, 6) ^ ror32(x, 11) ^ ror32(x, 25))
#define s0(x) (ror32(x, 7) ^ ror32(x, 18) ^ (x >> 3))
#define s1(x) (ror32(x, 17) ^ ror32(x, 19) ^ (x >> 10))
2014-07-11 13:33:58 +00:00
/* SHA224 round function */
#define RND(a, b, c, d, e, f, g, h, k) \
t0 = h + S1(e) + Ch(e, f, g) + k; \
t1 = S0(a) + Maj(a, b, c); \
d += t0; \
h = t0 + t1;
/* Adjusted round function for rotating state */
#define RNDr(S, W, i, k) \
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
S[(66 - i) % 8], S[(67 - i) % 8], \
S[(68 - i) % 8], S[(69 - i) % 8], \
S[(70 - i) % 8], S[(71 - i) % 8], \
W[i] + k)
/*
* SHA224 block compression function. The 256-bit state is transformed via
* the 512-bit input block to produce a new state.
*/
static void
sha224_Transform(uint32_t *state, const uint8_t block[64])
2014-07-11 13:33:58 +00:00
{
uint32_t W[64];
uint32_t S[8];
uint32_t t0, t1;
int i;
/* 1. Prepare message schedule W. */
be32decv(W, block, 16);
2014-07-11 13:33:58 +00:00
for (i = 16; i < 64; i++)
W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
/* 2. Initialize working variables. */
memcpy(S, state, 32);
/* 3. Mix. */
RNDr(S, W, 0, 0x428a2f98);
RNDr(S, W, 1, 0x71374491);
RNDr(S, W, 2, 0xb5c0fbcf);
RNDr(S, W, 3, 0xe9b5dba5);
RNDr(S, W, 4, 0x3956c25b);
RNDr(S, W, 5, 0x59f111f1);
RNDr(S, W, 6, 0x923f82a4);
RNDr(S, W, 7, 0xab1c5ed5);
RNDr(S, W, 8, 0xd807aa98);
RNDr(S, W, 9, 0x12835b01);
2014-07-11 13:33:58 +00:00
RNDr(S, W, 10, 0x243185be);
RNDr(S, W, 11, 0x550c7dc3);
RNDr(S, W, 12, 0x72be5d74);
RNDr(S, W, 13, 0x80deb1fe);
RNDr(S, W, 14, 0x9bdc06a7);
RNDr(S, W, 15, 0xc19bf174);
RNDr(S, W, 16, 0xe49b69c1);
RNDr(S, W, 17, 0xefbe4786);
RNDr(S, W, 18, 0x0fc19dc6);
RNDr(S, W, 19, 0x240ca1cc);
RNDr(S, W, 20, 0x2de92c6f);
RNDr(S, W, 21, 0x4a7484aa);
RNDr(S, W, 22, 0x5cb0a9dc);
RNDr(S, W, 23, 0x76f988da);
RNDr(S, W, 24, 0x983e5152);
RNDr(S, W, 25, 0xa831c66d);
RNDr(S, W, 26, 0xb00327c8);
RNDr(S, W, 27, 0xbf597fc7);
RNDr(S, W, 28, 0xc6e00bf3);
RNDr(S, W, 29, 0xd5a79147);
RNDr(S, W, 30, 0x06ca6351);
RNDr(S, W, 31, 0x14292967);
RNDr(S, W, 32, 0x27b70a85);
RNDr(S, W, 33, 0x2e1b2138);
RNDr(S, W, 34, 0x4d2c6dfc);
RNDr(S, W, 35, 0x53380d13);
RNDr(S, W, 36, 0x650a7354);
RNDr(S, W, 37, 0x766a0abb);
RNDr(S, W, 38, 0x81c2c92e);
RNDr(S, W, 39, 0x92722c85);
RNDr(S, W, 40, 0xa2bfe8a1);
RNDr(S, W, 41, 0xa81a664b);
RNDr(S, W, 42, 0xc24b8b70);
RNDr(S, W, 43, 0xc76c51a3);
RNDr(S, W, 44, 0xd192e819);
RNDr(S, W, 45, 0xd6990624);
RNDr(S, W, 46, 0xf40e3585);
RNDr(S, W, 47, 0x106aa070);
RNDr(S, W, 48, 0x19a4c116);
RNDr(S, W, 49, 0x1e376c08);
RNDr(S, W, 50, 0x2748774c);
RNDr(S, W, 51, 0x34b0bcb5);
RNDr(S, W, 52, 0x391c0cb3);
RNDr(S, W, 53, 0x4ed8aa4a);
RNDr(S, W, 54, 0x5b9cca4f);
RNDr(S, W, 55, 0x682e6ff3);
RNDr(S, W, 56, 0x748f82ee);
RNDr(S, W, 57, 0x78a5636f);
RNDr(S, W, 58, 0x84c87814);
RNDr(S, W, 59, 0x8cc70208);
RNDr(S, W, 60, 0x90befffa);
RNDr(S, W, 61, 0xa4506ceb);
RNDr(S, W, 62, 0xbef9a3f7);
RNDr(S, W, 63, 0xc67178f2);
/* 4. Mix local working variables into global state. */
for (i = 0; i < 8; i++)
state[i] += S[i];
}
static uint8_t PAD[64] = {
0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2014-07-11 13:33:58 +00:00
};
/* Add padding and terminating bit-count. */
static void
sha224_pad(sha224_ctx *ctx)
2014-07-11 13:33:58 +00:00
{
uint8_t len[8];
uint32_t r, plen;
/*
* Convert length to a vector of bytes -- we do this now rather
* than later because the length will change after we pad.
*/
be64enc(len, ctx->count);
/* Add 1--64 bytes so that the resulting length is 56 mod 64. */
r = (ctx->count >> 3) & 0x3f;
plen = (r < 56) ? (56 - r) : (120 - r);
sha224_update(ctx, PAD, (size_t)plen);
/* Add the terminating bit-count. */
sha224_update(ctx, len, 8);
}
/**
* sha224_init(ctx):
* Initialize the SHA224 context ${ctx}.
*/
void
sha224_init(sha224_ctx *ctx)
2014-07-11 13:33:58 +00:00
{
/* Zero bits processed so far. */
ctx->count = 0;
/* Magic initialization constants. */
ctx->state[0] = 0xc1059ed8;
ctx->state[1] = 0x367cd507;
ctx->state[2] = 0x3070dd17;
ctx->state[3] = 0xf70e5939;
ctx->state[4] = 0xffc00b31;
ctx->state[5] = 0x68581511;
ctx->state[6] = 0x64f98fa7;
ctx->state[7] = 0xbefa4fa4;
}
/**
* sha224_update(ctx, in, len):
* Input ${len} bytes from ${in} into the SHA224 context ${ctx}.
*/
void
sha224_update(sha224_ctx *ctx, const void *in, size_t len)
2014-07-11 13:33:58 +00:00
{
uint32_t r;
const uint8_t *src = in;
/* Return immediately if we have nothing to do. */
if (len == 0)
return;
/* Number of bytes left in the buffer from previous updates. */
r = (ctx->count >> 3) & 0x3f;
/* Update number of bits. */
ctx->count += (uint64_t)(len) << 3;
/* Handle the case where we don't need to perform any transforms. */
if (len < 64 - r) {
memcpy(&ctx->buf[r], src, len);
return;
}
/* Finish the current block. */
memcpy(&ctx->buf[r], src, 64 - r);
sha224_Transform(ctx->state, ctx->buf);
src += 64 - r;
len -= 64 - r;
/* Perform complete blocks. */
while (len >= 64) {
sha224_Transform(ctx->state, src);
src += 64;
len -= 64;
}
/* Copy left over data into buffer. */
memcpy(ctx->buf, src, len);
}
/**
* sha224_final(ctx, digest):
* Output the SHA224 hash of the data input to the context ${ctx} into the
* buffer ${digest}.
*/
void
sha224_final(sha224_ctx *ctx, uint8_t *digest)
2014-07-11 13:33:58 +00:00
{
/* Add padding. */
sha224_pad(ctx);
/* Write the hash. */
be32encv(digest, ctx->state, SHA224_DIGEST_LEN / 4);
2014-07-11 13:33:58 +00:00
/* Clear the context state. */
memset_s(ctx, 0, sizeof *ctx, sizeof *ctx);
2014-07-11 13:33:58 +00:00
}
/**
* sha224_complete(in, len, digest):
* Compute the SHA224 hash of ${len} bytes from $in} and write it to ${digest}.
*/
void
sha224_complete(const void *in, size_t len, uint8_t *digest)
2014-07-11 13:33:58 +00:00
{
sha224_ctx ctx;
sha224_init(&ctx);
sha224_update(&ctx, in, len);
sha224_final(&ctx, digest);
}
digest_algorithm sha224_digest = {
.name = "sha224",
2015-10-03 13:56:07 +00:00
.contextlen = sizeof(sha224_ctx),
2014-07-11 13:33:58 +00:00
.blocklen = SHA224_BLOCK_LEN,
.digestlen = SHA224_DIGEST_LEN,
.init = (digest_init_func)sha224_init,
.update = (digest_update_func)sha224_update,
.final = (digest_final_func)sha224_final,
.complete = (digest_complete_func)sha224_complete,
};