/* R_DH.C - Diffie-Hellman routines for RSAREF */ /* Copyright (C) RSA Laboratories, a division of RSA Data Security, Inc., created 1993. All rights reserved. */ #include "global.h" #include "rsaref.h" #include "r_random.h" #include "nn.h" #include "prime.h" /* Generates Diffie-Hellman parameters. */ int R_GenerateDHParams (params, primeBits, subPrimeBits, randomStruct) R_DH_PARAMS *params; /* new Diffie-Hellman parameters */ unsigned int primeBits; /* length of prime in bits */ unsigned int subPrimeBits; /* length of subprime in bits */ R_RANDOM_STRUCT *randomStruct; /* random structure */ { int status; NN_DIGIT g[MAX_NN_DIGITS], p[MAX_NN_DIGITS], q[MAX_NN_DIGITS], t[MAX_NN_DIGITS], u[MAX_NN_DIGITS], v[MAX_NN_DIGITS]; unsigned int pDigits; pDigits = (primeBits + NN_DIGIT_BITS - 1) / NN_DIGIT_BITS; /* Generate subprime q between 2^(subPrimeBits-1) and 2^subPrimeBits-1, searching in steps of 2. */ NN_Assign2Exp (t, subPrimeBits-1, pDigits); NN_Assign (u, t, pDigits); NN_ASSIGN_DIGIT (v, 1, pDigits); NN_Sub (v, t, v, pDigits); NN_Add (u, u, v, pDigits); NN_ASSIGN_DIGIT (v, 2, pDigits); if ((status = GeneratePrime (q, t, u, v, pDigits, randomStruct))) return (status); /* Generate prime p between 2^(primeBits-1) and 2^primeBits-1, searching in steps of 2*q. */ NN_Assign2Exp (t, primeBits-1, pDigits); NN_Assign (u, t, pDigits); NN_ASSIGN_DIGIT (v, 1, pDigits); NN_Sub (v, t, v, pDigits); NN_Add (u, u, v, pDigits); NN_LShift (v, q, 1, pDigits); if ((status = GeneratePrime (p, t, u, v, pDigits, randomStruct))) return (status); /* Generate generator g for subgroup as 2^((p-1)/q) mod p. */ NN_ASSIGN_DIGIT (g, 2, pDigits); NN_Div (t, u, p, pDigits, q, pDigits); NN_ModExp (g, g, t, pDigits, p, pDigits); params->generatorLen = params->primeLen = DH_PRIME_LEN (primeBits); NN_Encode (params->prime, params->primeLen, p, pDigits); NN_Encode (params->generator, params->generatorLen, g, pDigits); return (0); } /* Sets up Diffie-Hellman key agreement. Public value has same length as prime. */ int R_SetupDHAgreement (publicValue, privateValue, privateValueLen, params, randomStruct) unsigned char *publicValue; /* new public value */ unsigned char *privateValue; /* new private value */ unsigned int privateValueLen; /* length of private value */ R_DH_PARAMS *params; /* Diffie-Hellman parameters */ R_RANDOM_STRUCT *randomStruct; /* random structure */ { int status; NN_DIGIT g[MAX_NN_DIGITS], p[MAX_NN_DIGITS], x[MAX_NN_DIGITS], y[MAX_NN_DIGITS]; unsigned int pDigits, xDigits; NN_Decode (p, MAX_NN_DIGITS, params->prime, params->primeLen); pDigits = NN_Digits (p, MAX_NN_DIGITS); NN_Decode (g, pDigits, params->generator, params->generatorLen); /* Generate private value. */ if ((status = R_GenerateBytes (privateValue, privateValueLen, randomStruct))) return (status); NN_Decode (x, pDigits, privateValue, privateValueLen); xDigits = NN_Digits (x, pDigits); /* Compute y = g^x mod p. */ NN_ModExp (y, g, x, xDigits, p, pDigits); NN_Encode (publicValue, params->primeLen, y, pDigits); /* Zeroize sensitive information. */ R_memset ((POINTER)x, 0, sizeof (x)); return (0); } /* Computes agreed key from the other party's public value, a private value, and Diffie-Hellman parameters. Other public value and agreed-upon key have same length as prime. Requires otherPublicValue < prime. */ int R_ComputeDHAgreedKey (agreedKey, otherPublicValue, privateValue, privateValueLen, params) unsigned char *agreedKey; /* new agreed key */ unsigned char *otherPublicValue; /* other's public value */ unsigned char *privateValue; /* private value */ unsigned int privateValueLen; /* length of private value */ R_DH_PARAMS *params; /* Diffie-Hellman parameters */ { NN_DIGIT p[MAX_NN_DIGITS], x[MAX_NN_DIGITS], y[MAX_NN_DIGITS], z[MAX_NN_DIGITS]; unsigned int pDigits, xDigits; NN_Decode (p, MAX_NN_DIGITS, params->prime, params->primeLen); pDigits = NN_Digits (p, MAX_NN_DIGITS); NN_Decode (x, pDigits, privateValue, privateValueLen); xDigits = NN_Digits (x, pDigits); NN_Decode (y, pDigits, otherPublicValue, params->primeLen); if (NN_Cmp (y, p, pDigits) >= 0) return (RE_DATA); /* Compute z = y^x mod p. */ NN_ModExp (z, y, x, xDigits, p, pDigits); NN_Encode (agreedKey, params->primeLen, z, pDigits); /* Zeroize sensitive information. */ R_memset ((POINTER)x, 0, sizeof (x)); R_memset ((POINTER)z, 0, sizeof (z)); return (0); }