/*- * Copyright (c) 2012 The University of Oslo * Copyright (c) 2012-2014 Dag-Erling Smørgrav * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "cryb/impl.h" #include #include #include #include #include #include #include "t.h" #if WITH_OPENSSL #include #define SHA256_DIGEST_LEN SHA256_DIGEST_LENGTH static void t_sha256_complete(const void *msg, size_t msglen, uint8_t *digest) { SHA256_CTX ctx; SHA256_Init(&ctx); SHA256_Update(&ctx, msg, msglen); SHA256_Final(digest, &ctx); } #else #include #define t_sha256_complete(msg, msglen, digest) \ sha256_complete(msg, msglen, digest) #endif static struct t_vector { const char *desc; const char *msg; const uint8_t digest[SHA256_DIGEST_LEN]; } t_sha256_vectors[] = { { "zero-length message", "", { 0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55, } }, { "FIPS 180-2 B.1 (one-block message)", "abc", { 0xba, 0x78, 0x16, 0xbf, 0x8f, 0x01, 0xcf, 0xea, 0x41, 0x41, 0x40, 0xde, 0x5d, 0xae, 0x22, 0x23, 0xb0, 0x03, 0x61, 0xa3, 0x96, 0x17, 0x7a, 0x9c, 0xb4, 0x10, 0xff, 0x61, 0xf2, 0x00, 0x15, 0xad, } }, { /* * This message is *just* long enough to necessitate a * second block, which consists entirely of padding. */ "FIPS 180-2 B.2 (multi-block message)", "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", { 0x24, 0x8d, 0x6a, 0x61, 0xd2, 0x06, 0x38, 0xb8, 0xe5, 0xc0, 0x26, 0x93, 0x0c, 0x3e, 0x60, 0x39, 0xa3, 0x3c, 0xe4, 0x59, 0x64, 0xff, 0x21, 0x67, 0xf6, 0xec, 0xed, 0xd4, 0x19, 0xdb, 0x06, 0xc1, } }, { /* * 1,000,000 x 'a', filled in by t_prepare() */ "FIPS 180-2 B.3 (long message)", NULL, { 0xcd, 0xc7, 0x6e, 0x5c, 0x99, 0x14, 0xfb, 0x92, 0x81, 0xa1, 0xc7, 0xe2, 0x84, 0xd7, 0x3e, 0x67, 0xf1, 0x80, 0x9a, 0x48, 0xa4, 0x97, 0x20, 0x0e, 0x04, 0x6d, 0x39, 0xcc, 0xc7, 0x11, 0x2c, 0xd0, }, }, { /* * One of the MD5 test vectors, included for the "short * update" test. */ "\"1234567890\"x8", "1234567890123456789012345678901234567890" "1234567890123456789012345678901234567890", { 0xf3, 0x71, 0xbc, 0x4a, 0x31, 0x1f, 0x2b, 0x00, 0x9e, 0xef, 0x95, 0x2d, 0xd8, 0x3c, 0xa8, 0x0e, 0x2b, 0x60, 0x02, 0x6c, 0x8e, 0x93, 0x55, 0x92, 0xd0, 0xf9, 0xc3, 0x08, 0x45, 0x3c, 0x81, 0x3e, }, }, }; /* * Unit test: compute the SHA256 sum of the specified string and compare it * to the expected result. */ static int t_sha256_vector(char **desc CRYB_UNUSED, void *arg) { struct t_vector *vector = (struct t_vector *)arg; uint8_t digest[SHA256_DIGEST_LEN]; char *msg; if (vector->msg) { t_sha256_complete(vector->msg, strlen(vector->msg), digest); } else { /* special case for FIPS test vector 3 */ if ((msg = malloc(1000000)) == NULL) err(1, "malloc()"); memset(msg, 'a', 1000000); t_sha256_complete(msg, 1000000, digest); free(msg); } return (t_compare_mem(vector->digest, digest, SHA256_DIGEST_LEN)); } #if !defined(WITH_OPENSSL) && !defined(WITH_RSAREF) /* * Various corner cases and error conditions */ static int t_sha256_short_updates(char **desc CRYB_UNUSED, void *arg) { struct t_vector *vector = (struct t_vector *)arg; uint8_t digest[SHA256_DIGEST_LEN]; sha256_ctx ctx; int i, len; sha256_init(&ctx); len = strlen(vector->msg); for (i = 0; i + 5 < len; i += 5) sha256_update(&ctx, vector->msg + i, 5); sha256_update(&ctx, vector->msg + i, len - i); sha256_final(&ctx, digest); return (memcmp(digest, vector->digest, SHA256_DIGEST_LEN) == 0); } #endif /* * Performance test: measure the time spent computing the SHA256 sum of a * message of the specified length. */ #define T_PERF_ITERATIONS 1000 static int t_sha256_perf(char **desc, void *arg) { struct timespec ts, te; unsigned long ns; uint8_t digest[SHA256_DIGEST_LEN]; char *msg, *comment; size_t msglen = *(size_t *)arg; if ((msg = calloc(1, msglen)) == NULL) err(1, "calloc()"); clock_gettime(CLOCK_MONOTONIC_PRECISE, &ts); for (int i = 0; i < T_PERF_ITERATIONS; ++i) t_sha256_complete(msg, msglen, digest); clock_gettime(CLOCK_MONOTONIC_PRECISE, &te); free(msg); ns = te.tv_sec * 1000000000LU + te.tv_nsec; ns -= ts.tv_sec * 1000000000LU + ts.tv_nsec; asprintf(&comment, "%zu bytes: %d iterations in %'lu ns", msglen, T_PERF_ITERATIONS, ns); if (comment == NULL) err(1, "asprintf()"); *desc = comment; return (1); } /*************************************************************************** * Boilerplate */ int t_prepare(int argc, char *argv[]) { int i, n; (void)argc; (void)argv; n = sizeof t_sha256_vectors / sizeof t_sha256_vectors[0]; for (i = 0; i < n; ++i) t_add_test(t_sha256_vector, &t_sha256_vectors[i], t_sha256_vectors[i].desc); #if !defined(WITH_OPENSSL) && !defined(WITH_RSAREF) /* * Run test vector 5 (md5 test vector 7, which is 80 characters * long) 5 characters at a time. This tests a) appending data to * an underfull block and b) appending more data to an underfull * block than it has room for (since 64 % 5 != 0). Test vector 4 * and 5 already exercised the code path for computing a block * directly from source (without copying it in), and all the test * vectors except vector 1 exercised the general case of copying a * small amount of data in without crossing the block boundary. */ t_add_test(t_sha256_short_updates, &t_sha256_vectors[4], "multiple short updates"); #endif if (getenv("CRYB_PERFTEST")) { static size_t one = 1, thousand = 1000, million = 1000000; t_add_test(t_sha256_perf, &one, "performance test (1 byte)"); t_add_test(t_sha256_perf, &thousand, "performance test (1,000 bytes)"); t_add_test(t_sha256_perf, &million, "performance test (1,000,000 bytes)"); } return (0); } void t_cleanup(void) { }