/*- * Copyright (c) 2012 The University of Oslo * Copyright (c) 2012-2014 Dag-Erling Smørgrav * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Author: Dag-Erling Smørgrav * Sponsor: the University of Oslo * * $Cryb$ */ #include "cryb/impl.h" #ifdef HAVE_SYS_ENDIAN_H #include #endif #ifdef HAVE_ENDIAN_H #define _BSD_SOURCE #include #endif #include #include #include #include static uint32_t sha1_h[5] = { 0x67452301U, 0xefcdab89U, 0x98badcfeU, 0x10325476U, 0xc3d2e1f0U, }; static uint32_t sha1_k[4] = { 0x5a827999U, 0x6ed9eba1U, 0x8f1bbcdcU, 0xca62c1d6U, }; void sha1_init(sha1_ctx *ctx) { memset(ctx, 0, sizeof *ctx); memcpy(ctx->h, sha1_h, sizeof ctx->h); } #define sha1_ch(x, y, z) ((x & y) ^ (~x & z)) #define sha1_parity(x, y, z) ((x ^ y ^ z)) #define sha1_maj(x, y, z) (((x & y) ^ (x & z) ^ (y & z))) #define sha1_step(t, a, f, e, w) \ do { \ uint32_t T = rol(a, 5) + f + e + sha1_k[t/20] + w[t]; \ e = d; \ d = c; \ c = rol(b, 30); \ b = a; \ a = T; \ } while (0) static void sha1_compute(sha1_ctx *ctx, const uint8_t *block) { uint32_t w[80], a, b, c, d, e; memcpy(w, block, 64); for (int i = 0; i < 16; ++i) w[i] = be32toh(w[i]); for (int i = 16; i < 80; ++i) { w[i] = w[i-3] ^ w[i-8] ^ w[i-14] ^ w[i-16]; w[i] = rol(w[i], 1); } a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3]; e = ctx->h[4]; sha1_step( 0, a, sha1_ch(b, c, d), e, w); sha1_step( 1, a, sha1_ch(b, c, d), e, w); sha1_step( 2, a, sha1_ch(b, c, d), e, w); sha1_step( 3, a, sha1_ch(b, c, d), e, w); sha1_step( 4, a, sha1_ch(b, c, d), e, w); sha1_step( 5, a, sha1_ch(b, c, d), e, w); sha1_step( 6, a, sha1_ch(b, c, d), e, w); sha1_step( 7, a, sha1_ch(b, c, d), e, w); sha1_step( 8, a, sha1_ch(b, c, d), e, w); sha1_step( 9, a, sha1_ch(b, c, d), e, w); sha1_step(10, a, sha1_ch(b, c, d), e, w); sha1_step(11, a, sha1_ch(b, c, d), e, w); sha1_step(12, a, sha1_ch(b, c, d), e, w); sha1_step(13, a, sha1_ch(b, c, d), e, w); sha1_step(14, a, sha1_ch(b, c, d), e, w); sha1_step(15, a, sha1_ch(b, c, d), e, w); sha1_step(16, a, sha1_ch(b, c, d), e, w); sha1_step(17, a, sha1_ch(b, c, d), e, w); sha1_step(18, a, sha1_ch(b, c, d), e, w); sha1_step(19, a, sha1_ch(b, c, d), e, w); sha1_step(20, a, sha1_parity(b, c, d), e, w); sha1_step(21, a, sha1_parity(b, c, d), e, w); sha1_step(22, a, sha1_parity(b, c, d), e, w); sha1_step(23, a, sha1_parity(b, c, d), e, w); sha1_step(24, a, sha1_parity(b, c, d), e, w); sha1_step(25, a, sha1_parity(b, c, d), e, w); sha1_step(26, a, sha1_parity(b, c, d), e, w); sha1_step(27, a, sha1_parity(b, c, d), e, w); sha1_step(28, a, sha1_parity(b, c, d), e, w); sha1_step(29, a, sha1_parity(b, c, d), e, w); sha1_step(30, a, sha1_parity(b, c, d), e, w); sha1_step(31, a, sha1_parity(b, c, d), e, w); sha1_step(32, a, sha1_parity(b, c, d), e, w); sha1_step(33, a, sha1_parity(b, c, d), e, w); sha1_step(34, a, sha1_parity(b, c, d), e, w); sha1_step(35, a, sha1_parity(b, c, d), e, w); sha1_step(36, a, sha1_parity(b, c, d), e, w); sha1_step(37, a, sha1_parity(b, c, d), e, w); sha1_step(38, a, sha1_parity(b, c, d), e, w); sha1_step(39, a, sha1_parity(b, c, d), e, w); sha1_step(40, a, sha1_maj(b, c, d), e, w); sha1_step(41, a, sha1_maj(b, c, d), e, w); sha1_step(42, a, sha1_maj(b, c, d), e, w); sha1_step(43, a, sha1_maj(b, c, d), e, w); sha1_step(44, a, sha1_maj(b, c, d), e, w); sha1_step(45, a, sha1_maj(b, c, d), e, w); sha1_step(46, a, sha1_maj(b, c, d), e, w); sha1_step(47, a, sha1_maj(b, c, d), e, w); sha1_step(48, a, sha1_maj(b, c, d), e, w); sha1_step(49, a, sha1_maj(b, c, d), e, w); sha1_step(50, a, sha1_maj(b, c, d), e, w); sha1_step(51, a, sha1_maj(b, c, d), e, w); sha1_step(52, a, sha1_maj(b, c, d), e, w); sha1_step(53, a, sha1_maj(b, c, d), e, w); sha1_step(54, a, sha1_maj(b, c, d), e, w); sha1_step(55, a, sha1_maj(b, c, d), e, w); sha1_step(56, a, sha1_maj(b, c, d), e, w); sha1_step(57, a, sha1_maj(b, c, d), e, w); sha1_step(58, a, sha1_maj(b, c, d), e, w); sha1_step(59, a, sha1_maj(b, c, d), e, w); sha1_step(60, a, sha1_parity(b, c, d), e, w); sha1_step(61, a, sha1_parity(b, c, d), e, w); sha1_step(62, a, sha1_parity(b, c, d), e, w); sha1_step(63, a, sha1_parity(b, c, d), e, w); sha1_step(64, a, sha1_parity(b, c, d), e, w); sha1_step(65, a, sha1_parity(b, c, d), e, w); sha1_step(66, a, sha1_parity(b, c, d), e, w); sha1_step(67, a, sha1_parity(b, c, d), e, w); sha1_step(68, a, sha1_parity(b, c, d), e, w); sha1_step(69, a, sha1_parity(b, c, d), e, w); sha1_step(70, a, sha1_parity(b, c, d), e, w); sha1_step(71, a, sha1_parity(b, c, d), e, w); sha1_step(72, a, sha1_parity(b, c, d), e, w); sha1_step(73, a, sha1_parity(b, c, d), e, w); sha1_step(74, a, sha1_parity(b, c, d), e, w); sha1_step(75, a, sha1_parity(b, c, d), e, w); sha1_step(76, a, sha1_parity(b, c, d), e, w); sha1_step(77, a, sha1_parity(b, c, d), e, w); sha1_step(78, a, sha1_parity(b, c, d), e, w); sha1_step(79, a, sha1_parity(b, c, d), e, w); ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d; ctx->h[4] += e; } void sha1_update(sha1_ctx *ctx, const void *buf, size_t len) { size_t copylen; while (len) { if (ctx->blocklen > 0 || len < sizeof ctx->block) { copylen = sizeof ctx->block - ctx->blocklen; if (copylen > len) copylen = len; memcpy(ctx->block + ctx->blocklen, buf, copylen); ctx->blocklen += copylen; if (ctx->blocklen == sizeof ctx->block) { sha1_compute(ctx, ctx->block); ctx->blocklen = 0; memset(ctx->block, 0, sizeof ctx->block); } } else { copylen = sizeof ctx->block; sha1_compute(ctx, buf); } ctx->bitlen += copylen * 8; buf += copylen; len -= copylen; } } void sha1_final(sha1_ctx *ctx, void *digest) { uint32_t hi, lo; ctx->block[ctx->blocklen++] = 0x80; if (ctx->blocklen > 56) { sha1_compute(ctx, ctx->block); ctx->blocklen = 0; memset(ctx->block, 0, sizeof ctx->block); } hi = htobe32(ctx->bitlen >> 32); lo = htobe32(ctx->bitlen & 0xffffffffUL); memcpy(ctx->block + 56, &hi, 4); memcpy(ctx->block + 60, &lo, 4); ctx->blocklen = 64; sha1_compute(ctx, ctx->block); for (int i = 0; i < 5; ++i) ctx->h[i] = htobe32(ctx->h[i]); memcpy(digest, ctx->h, 20); memset(ctx, 0, sizeof *ctx); } void sha1_complete(const void *buf, size_t len, void *digest) { sha1_ctx ctx; sha1_init(&ctx); sha1_update(&ctx, buf, len); sha1_final(&ctx, digest); } digest_algorithm sha1_digest = { .name = "sha1", .contextlen = sizeof sha1_digest, .blocklen = SHA1_BLOCK_LEN, .digestlen = SHA1_DIGEST_LEN, .init = (digest_init_func)sha1_init, .update = (digest_update_func)sha1_update, .final = (digest_final_func)sha1_final, .complete = (digest_complete_func)sha1_complete, };