/* PRIME.C - primality-testing routines */ /* Copyright (C) RSA Laboratories, a division of RSA Data Security, Inc., created 1991. All rights reserved. */ #include "global.h" #include "rsaref.h" #include "r_random.h" #include "nn.h" #include "prime.h" static unsigned int SMALL_PRIMES[] = { 3, 5, 7, 11 }; #define SMALL_PRIME_COUNT 4 static int ProbablePrime PROTO_LIST ((NN_DIGIT *, unsigned int)); static int SmallFactor PROTO_LIST ((NN_DIGIT *, unsigned int)); static int FermatTest PROTO_LIST ((NN_DIGIT *, unsigned int)); /* Generates a probable prime a between b and c such that a-1 is divisible by d. Lengths: a[digits], b[digits], c[digits], d[digits]. Assumes b < c, digits < MAX_NN_DIGITS. Returns RE_NEED_RANDOM if randomStruct not seeded, RE_DATA if unsuccessful. */ int GeneratePrime (a, b, c, d, digits, randomStruct) NN_DIGIT *a, *b, *c, *d; unsigned int digits; R_RANDOM_STRUCT *randomStruct; { int status; unsigned char block[MAX_NN_DIGITS * NN_DIGIT_LEN]; NN_DIGIT t[MAX_NN_DIGITS], u[MAX_NN_DIGITS]; /* Generate random number between b and c. */ if ((status = R_GenerateBytes (block, digits * NN_DIGIT_LEN, randomStruct))) return (status); NN_Decode (a, digits, block, digits * NN_DIGIT_LEN); NN_Sub (t, c, b, digits); NN_ASSIGN_DIGIT (u, 1, digits); NN_Add (t, t, u, digits); NN_Mod (a, a, digits, t, digits); NN_Add (a, a, b, digits); /* Adjust so that a-1 is divisible by d. */ NN_Mod (t, a, digits, d, digits); NN_Sub (a, a, t, digits); NN_Add (a, a, u, digits); if (NN_Cmp (a, b, digits) < 0) NN_Add (a, a, d, digits); if (NN_Cmp (a, c, digits) > 0) NN_Sub (a, a, d, digits); /* Search to c in steps of d. */ NN_Assign (t, c, digits); NN_Sub (t, t, d, digits); while (! ProbablePrime (a, digits)) { if (NN_Cmp (a, t, digits) > 0) return (RE_DATA); NN_Add (a, a, d, digits); } return (0); } /* Returns nonzero iff a is a probable prime. Lengths: a[aDigits]. Assumes aDigits < MAX_NN_DIGITS. */ static int ProbablePrime (a, aDigits) NN_DIGIT *a; unsigned int aDigits; { return (! SmallFactor (a, aDigits) && FermatTest (a, aDigits)); } /* Returns nonzero iff a has a prime factor in SMALL_PRIMES. Lengths: a[aDigits]. Assumes aDigits < MAX_NN_DIGITS. */ static int SmallFactor (a, aDigits) NN_DIGIT *a; unsigned int aDigits; { int status; NN_DIGIT t[1]; unsigned int i; status = 0; for (i = 0; i < SMALL_PRIME_COUNT; i++) { NN_ASSIGN_DIGIT (t, SMALL_PRIMES[i], 1); if ((aDigits == 1) && ! NN_Cmp (a, t, 1)) break; NN_Mod (t, a, aDigits, t, 1); if (NN_Zero (t, 1)) { status = 1; break; } } /* Zeroize sensitive information. */ i = 0; R_memset ((POINTER)t, 0, sizeof (t)); return (status); } /* Returns nonzero iff a passes Fermat's test for witness 2. (All primes pass the test, and nearly all composites fail.) Lengths: a[aDigits]. Assumes aDigits < MAX_NN_DIGITS. */ static int FermatTest (a, aDigits) NN_DIGIT *a; unsigned int aDigits; { int status; NN_DIGIT t[MAX_NN_DIGITS], u[MAX_NN_DIGITS]; NN_ASSIGN_DIGIT (t, 2, aDigits); NN_ModExp (u, t, a, aDigits, a, aDigits); status = NN_EQUAL (t, u, aDigits); /* Zeroize sensitive information. */ R_memset ((POINTER)u, 0, sizeof (u)); return (status); }