/*- * Copyright (c) 2012 The University of Oslo * Copyright (c) 2012-2014 Dag-Erling Smørgrav * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Author: Dag-Erling Smørgrav * Sponsor: the University of Oslo * * $Cryb: trunk/t/t_sha384.c 3 2014-07-04 11:20:46Z des $ */ #include "cryb/impl.h" #include #include #include #include #include #include #include "t.h" #if WITH_OPENSSL #include #define SHA384_DIGEST_LEN SHA384_DIGEST_LENGTH static void t_sha384_complete(const void *msg, size_t msglen, uint8_t *digest) { SHA512_CTX ctx; /* yes, 512 is correct */ SHA384_Init(&ctx); SHA384_Update(&ctx, msg, msglen); SHA384_Final(digest, &ctx); } #else #include #define t_sha384_complete(msg, msglen, digest) \ sha384_complete(msg, msglen, digest) #endif static struct t_vector { const char *desc; const char *msg; const uint8_t digest[SHA384_DIGEST_LEN]; } t_sha384_vectors[] = { { "zero-length message", "", { 0x38, 0xb0, 0x60, 0xa7, 0x51, 0xac, 0x96, 0x38, 0x4c, 0xd9, 0x32, 0x7e, 0xb1, 0xb1, 0xe3, 0x6a, 0x21, 0xfd, 0xb7, 0x11, 0x14, 0xbe, 0x07, 0x43, 0x4c, 0x0c, 0xc7, 0xbf, 0x63, 0xf6, 0xe1, 0xda, 0x27, 0x4e, 0xde, 0xbf, 0xe7, 0x6f, 0x65, 0xfb, 0xd5, 0x1a, 0xd2, 0xf1, 0x48, 0x98, 0xb9, 0x5b, } }, { "FIPS 180-2 D.1 (one-block message)", "abc", { 0xcb, 0x00, 0x75, 0x3f, 0x45, 0xa3, 0x5e, 0x8b, 0xb5, 0xa0, 0x3d, 0x69, 0x9a, 0xc6, 0x50, 0x07, 0x27, 0x2c, 0x32, 0xab, 0x0e, 0xde, 0xd1, 0x63, 0x1a, 0x8b, 0x60, 0x5a, 0x43, 0xff, 0x5b, 0xed, 0x80, 0x86, 0x07, 0x2b, 0xa1, 0xe7, 0xcc, 0x23, 0x58, 0xba, 0xec, 0xa1, 0x34, 0xc8, 0x25, 0xa7, } }, { /* * This message is *just* long enough to necessitate a * second block, which consists entirely of padding. */ "FIPS 180-2 D.2 (multi-block message)", "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn" "hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu", { 0x09, 0x33, 0x0c, 0x33, 0xf7, 0x11, 0x47, 0xe8, 0x3d, 0x19, 0x2f, 0xc7, 0x82, 0xcd, 0x1b, 0x47, 0x53, 0x11, 0x1b, 0x17, 0x3b, 0x3b, 0x05, 0xd2, 0x2f, 0xa0, 0x80, 0x86, 0xe3, 0xb0, 0xf7, 0x12, 0xfc, 0xc7, 0xc7, 0x1a, 0x55, 0x7e, 0x2d, 0xb9, 0x66, 0xc3, 0xe9, 0xfa, 0x91, 0x74, 0x60, 0x39, } }, { /* * 1,000,000 x 'a', filled in by t_prepare() */ "FIPS 180-2 D.3 (long message)", NULL, { 0x9d, 0x0e, 0x18, 0x09, 0x71, 0x64, 0x74, 0xcb, 0x08, 0x6e, 0x83, 0x4e, 0x31, 0x0a, 0x4a, 0x1c, 0xed, 0x14, 0x9e, 0x9c, 0x00, 0xf2, 0x48, 0x52, 0x79, 0x72, 0xce, 0xc5, 0x70, 0x4c, 0x2a, 0x5b, 0x07, 0xb8, 0xb3, 0xdc, 0x38, 0xec, 0xc4, 0xeb, 0xae, 0x97, 0xdd, 0xd8, 0x7f, 0x3d, 0x89, 0x85, }, }, { /* * One of the MD5 test vectors, included for the "short * update" test. */ "\"1234567890\"x8", "1234567890123456789012345678901234567890" "1234567890123456789012345678901234567890", { 0xb1, 0x29, 0x32, 0xb0, 0x62, 0x7d, 0x1c, 0x06, 0x09, 0x42, 0xf5, 0x44, 0x77, 0x64, 0x15, 0x56, 0x55, 0xbd, 0x4d, 0xa0, 0xc9, 0xaf, 0xa6, 0xdd, 0x9b, 0x9e, 0xf5, 0x31, 0x29, 0xaf, 0x1b, 0x8f, 0xb0, 0x19, 0x59, 0x96, 0xd2, 0xde, 0x9c, 0xa0, 0xdf, 0x9d, 0x82, 0x1f, 0xfe, 0xe6, 0x70, 0x26, }, }, }; /* * Unit test: compute the SHA384 sum of the specified string and compare it * to the expected result. */ static int t_sha384_vector(char **desc CRYB_UNUSED, void *arg) { struct t_vector *vector = (struct t_vector *)arg; uint8_t digest[SHA384_DIGEST_LEN]; char *msg; if (vector->msg) { t_sha384_complete(vector->msg, strlen(vector->msg), digest); } else { /* special case for FIPS test vector 3 */ if ((msg = malloc(1000000)) == NULL) err(1, "malloc()"); memset(msg, 'a', 1000000); t_sha384_complete(msg, 1000000, digest); free(msg); } if (memcmp(digest, vector->digest, SHA384_DIGEST_LEN) != 0) { t_verbose("expected "); t_verbose_hex(vector->digest, SHA384_DIGEST_LEN); t_verbose("\n"); t_verbose("got "); t_verbose_hex(digest, SHA384_DIGEST_LEN); t_verbose("\n"); return (0); } return (1); } #if !defined(WITH_OPENSSL) && !defined(WITH_RSAREF) /* * Various corner cases and error conditions */ static int t_sha384_short_updates(char **desc CRYB_UNUSED, void *arg) { struct t_vector *vector = (struct t_vector *)arg; uint8_t digest[SHA384_DIGEST_LEN]; sha384_ctx ctx; int i, len; sha384_init(&ctx); len = strlen(vector->msg); for (i = 0; i + 5 < len; i += 5) sha384_update(&ctx, vector->msg + i, 5); sha384_update(&ctx, vector->msg + i, len - i); sha384_final(&ctx, digest); return (memcmp(digest, vector->digest, SHA384_DIGEST_LEN) == 0); } #endif #ifdef BENCHMARKS /* * Performance test: measure the time spent computing the SHA384 sum of a * message of the specified length. */ #define T_PERF_ITERATIONS 1000 static int t_sha384_perf(char **desc, void *arg) { struct timespec ts, te; unsigned long ns; uint8_t digest[SHA384_DIGEST_LEN]; char *msg, *comment; size_t msglen = *(size_t *)arg; if ((msg = calloc(1, msglen)) == NULL) err(1, "calloc()"); clock_gettime(CLOCK_MONOTONIC_PRECISE, &ts); for (int i = 0; i < T_PERF_ITERATIONS; ++i) t_sha384_complete(msg, msglen, digest); clock_gettime(CLOCK_MONOTONIC_PRECISE, &te); free(msg); ns = te.tv_sec * 1000000000LU + te.tv_nsec; ns -= ts.tv_sec * 1000000000LU + ts.tv_nsec; asprintf(&comment, "%zu bytes: %d iterations in %'lu ns", msglen, T_PERF_ITERATIONS, ns); if (comment == NULL) err(1, "asprintf()"); *desc = comment; return (1); } #endif /*************************************************************************** * Boilerplate */ int t_prepare(int argc, char *argv[]) { int i, n; (void)argc; (void)argv; n = sizeof t_sha384_vectors / sizeof t_sha384_vectors[0]; for (i = 0; i < n; ++i) t_add_test(t_sha384_vector, &t_sha384_vectors[i], t_sha384_vectors[i].desc); #if !defined(WITH_OPENSSL) && !defined(WITH_RSAREF) /* * Run test vector 5 (md5 test vector 7, which is 80 characters * long) 5 characters at a time. This tests a) appending data to * an underfull block and b) appending more data to an underfull * block than it has room for (since 64 % 5 != 0). Test vector 4 * and 5 already exercised the code path for computing a block * directly from source (without copying it in), and all the test * vectors except vector 1 exercised the general case of copying a * small amount of data in without crossing the block boundary. */ t_add_test(t_sha384_short_updates, &t_sha384_vectors[4], "multiple short updates"); #endif #ifdef BENCHMARKS static size_t one = 1, thousand = 1000, million = 1000000; t_add_test(t_sha384_perf, &one, "performance test (1 byte)"); t_add_test(t_sha384_perf, &thousand, "performance test (1,000 bytes)"); t_add_test(t_sha384_perf, &million, "performance test (1,000,000 bytes)"); #endif return (0); } void t_cleanup(void) { }