/* * Copyright (c) 2014-2017 Dag-Erling Smørgrav * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "cryb/impl.h" #include #include #include #include /* * MD2 - RFC 1319 * * Note 1: the pseudocode for the checksum calculation in the RFC contains * a significant error - consult the errata. * * Note 2: the RFC describes the algorithm as having five steps: 1) append * padding, 2) compute checksum, 3) initialize state, 4) compute digest * and 5) output. This implementation merges the checksum and digest * computations, which are independent of eachother, which avoids * processing the message twice. The padding is then appended and fed * through the checksum and digest computation, and finally the checksum * itself is fed through. Note that we update the checksum *after* the * digest, otherwise the final step (mixing the checksum into the digest) * would clobber the checksum before it was used. */ static const uint8_t md2_s[256] = { 0x29, 0x2e, 0x43, 0xc9, 0xa2, 0xd8, 0x7c, 0x01, 0x3d, 0x36, 0x54, 0xa1, 0xec, 0xf0, 0x06, 0x13, 0x62, 0xa7, 0x05, 0xf3, 0xc0, 0xc7, 0x73, 0x8c, 0x98, 0x93, 0x2b, 0xd9, 0xbc, 0x4c, 0x82, 0xca, 0x1e, 0x9b, 0x57, 0x3c, 0xfd, 0xd4, 0xe0, 0x16, 0x67, 0x42, 0x6f, 0x18, 0x8a, 0x17, 0xe5, 0x12, 0xbe, 0x4e, 0xc4, 0xd6, 0xda, 0x9e, 0xde, 0x49, 0xa0, 0xfb, 0xf5, 0x8e, 0xbb, 0x2f, 0xee, 0x7a, 0xa9, 0x68, 0x79, 0x91, 0x15, 0xb2, 0x07, 0x3f, 0x94, 0xc2, 0x10, 0x89, 0x0b, 0x22, 0x5f, 0x21, 0x80, 0x7f, 0x5d, 0x9a, 0x5a, 0x90, 0x32, 0x27, 0x35, 0x3e, 0xcc, 0xe7, 0xbf, 0xf7, 0x97, 0x03, 0xff, 0x19, 0x30, 0xb3, 0x48, 0xa5, 0xb5, 0xd1, 0xd7, 0x5e, 0x92, 0x2a, 0xac, 0x56, 0xaa, 0xc6, 0x4f, 0xb8, 0x38, 0xd2, 0x96, 0xa4, 0x7d, 0xb6, 0x76, 0xfc, 0x6b, 0xe2, 0x9c, 0x74, 0x04, 0xf1, 0x45, 0x9d, 0x70, 0x59, 0x64, 0x71, 0x87, 0x20, 0x86, 0x5b, 0xcf, 0x65, 0xe6, 0x2d, 0xa8, 0x02, 0x1b, 0x60, 0x25, 0xad, 0xae, 0xb0, 0xb9, 0xf6, 0x1c, 0x46, 0x61, 0x69, 0x34, 0x40, 0x7e, 0x0f, 0x55, 0x47, 0xa3, 0x23, 0xdd, 0x51, 0xaf, 0x3a, 0xc3, 0x5c, 0xf9, 0xce, 0xba, 0xc5, 0xea, 0x26, 0x2c, 0x53, 0x0d, 0x6e, 0x85, 0x28, 0x84, 0x09, 0xd3, 0xdf, 0xcd, 0xf4, 0x41, 0x81, 0x4d, 0x52, 0x6a, 0xdc, 0x37, 0xc8, 0x6c, 0xc1, 0xab, 0xfa, 0x24, 0xe1, 0x7b, 0x08, 0x0c, 0xbd, 0xb1, 0x4a, 0x78, 0x88, 0x95, 0x8b, 0xe3, 0x63, 0xe8, 0x6d, 0xe9, 0xcb, 0xd5, 0xfe, 0x3b, 0x00, 0x1d, 0x39, 0xf2, 0xef, 0xb7, 0x0e, 0x66, 0x58, 0xd0, 0xe4, 0xa6, 0x77, 0x72, 0xf8, 0xeb, 0x75, 0x4b, 0x0a, 0x31, 0x44, 0x50, 0xb4, 0x8f, 0xed, 0x1f, 0x1a, 0xdb, 0x99, 0x8d, 0x33, 0x9f, 0x11, 0x83, 0x14, }; void md2_init(md2_ctx *ctx) { memset(ctx, 0, sizeof *ctx); } static void md2_compute(md2_ctx *ctx, const uint8_t *block) { unsigned int j, k; uint8_t l, t; for (j = 0; j < 16; j++) { ctx->state[j + 16] = block[j]; ctx->state[j + 32] = block[j] ^ ctx->state[j]; } t = 0; for (j = 0; j < 18; ++j) { for (k = 0; k < 48; ++k) { ctx->state[k] = ctx->state[k] ^ md2_s[t]; t = ctx->state[k]; } t = t + j; } l = ctx->cksum[15]; for (j = 0; j < 16; ++j) { ctx->cksum[j] ^= md2_s[block[j] ^ l]; l = ctx->cksum[j]; } } void md2_update(md2_ctx *ctx, const void *buf, size_t len) { size_t copylen; while (len) { if (ctx->blocklen > 0 || len < sizeof ctx->block) { copylen = sizeof ctx->block - ctx->blocklen; if (copylen > len) copylen = len; memcpy(ctx->block + ctx->blocklen, buf, copylen); ctx->blocklen += copylen; if (ctx->blocklen == sizeof ctx->block) { md2_compute(ctx, ctx->block); ctx->blocklen = 0; } } else { copylen = sizeof ctx->block; md2_compute(ctx, buf); } buf += copylen; len -= copylen; } } void md2_final(md2_ctx *ctx, uint8_t *digest) { unsigned int i; uint8_t x; x = sizeof ctx->block - ctx->blocklen; for (i = ctx->blocklen; i < sizeof ctx->block; i++) ctx->block[i] = x; md2_compute(ctx, ctx->block); md2_compute(ctx, ctx->cksum); memcpy(digest, ctx->state, MD2_DIGEST_LEN); memset_s(&ctx, 0, sizeof ctx, sizeof ctx); } void md2_complete(const void *buf, size_t len, uint8_t *digest) { md2_ctx ctx; md2_init(&ctx); md2_update(&ctx, buf, len); md2_final(&ctx, digest); } digest_algorithm md2_digest = { .name = "md2", .contextlen = sizeof(md2_ctx), .blocklen = MD2_BLOCK_LEN, .digestlen = MD2_DIGEST_LEN, .init = (digest_init_func)md2_init, .update = (digest_update_func)md2_update, .final = (digest_final_func)md2_final, .complete = (digest_complete_func)md2_complete, };