cryb-to/lib/test/cryb_t_malloc.c
Dag-Erling Smørgrav 304fc8314d Solve further asprintf() issues by sweeping them under the rug.
All further instances of asprintf() or vasprintf() in our codebase are either in libcryb-test or in individual unit tests, and in all cases, the only consequence of a failed call is that the result will say "no description" instead of either a description of the test or an explanation of how it failed.  Therefore, we can simply ignore the problem and cast the call to void to satisfy gcc.
2016-09-18 22:40:48 +02:00

564 lines
14 KiB
C

/*
* Copyright (c) 2014 Dag-Erling Smørgrav
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "cryb/impl.h"
#include <sys/param.h>
#include <sys/mman.h>
#ifndef MAP_NOCORE
#define MAP_NOCORE 0
#endif
#ifndef MAP_NOSYNC
#define MAP_NOSYNC 0
#endif
#if HAVE_UTRACE
#if HAVE_SYS_KTRACE_H
#if HAVE_SYS_UIO_H
#include <sys/uio.h>
#endif
#include <sys/ktrace.h>
#endif
#endif
#include <assert.h>
#include <errno.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <cryb/test.h>
/*
* Very simple, non-thread-safe malloc() implementation tailored for unit
* tests. The most important feature of this implementation is the
* t_malloc_fail flag, which can be used to force malloc(), calloc() and
* realloc() calls to fail. It also emits jemalloc-compatible trace
* records on platforms that have utrace(2).
*
* Allocations are satisfied either from a bucket or by direct mapping.
* The allocation size is first rounded to the nearest power of two or 16,
* whichever is largest. If this number is larger than the maximum bucket
* block size, a direct mapping is used. Otherwise, the appropriate
* bucket is selected and the first free block from that bucket is
* returned. If there are no free blocks in the bucket, the allocation
* fails.
*
* Bucket metadata is stored in a static array; the buckets themselves are
* allocated using mmap(). The free list is maintained by keeping a
* pointer to the first free block in the bucket metadata, and storing a
* pointer to the next free block at the start of each free block. These
* pointers are not preinitialized, which avoid faulting in large amounts
* of memory that will never be used.
*
* Direct mappings are allocated using mmap(). Metadata for each mapping
* is stored in a malloc()ed struct in a linked list.
*
* Attempts to allocate 0 bytes return a pointer to address space which is
* mmap()ed with PROT_NONE, causing any attempt to use it to fail.
*
* The data structures used are arrays and linked lists, which would be
* unacceptably inefficient for production use but are good enough for
* testing.
*/
#define PADD(p, c) (void *)((intptr_t)(p) + (size_t)(c))
#define PSUB(p, c) (void *)((intptr_t)(p) + (size_t)(c))
#define PDIFF(p1, p2) (size_t)((char *)(p1) - (char *)(p2))
/* base 2 logarithm of the minimum and maximum block sizes */
#define BUCKET_MIN_SHIFT 4
#define BUCKET_MAX_SHIFT 16
/* bucket size */
#define BUCKET_SIZE (16*1024*1024)
/* byte values used to fill allocated and unallocated blocks */
#define BUCKET_FILL_ALLOC 0xaa
#define BUCKET_FILL_FREE 0x55
struct bucket {
void *base; /* bottom of bucket */
void *top; /* top of bucket */
void *free; /* first free block */
void *unused; /* first never-used block */
unsigned long nalloc;
unsigned long nfree;
};
struct mapping {
void *base; /* base address */
void *top; /* end address */
struct mapping *prev, *next; /* linked list */
};
/* bucket metadata */
static struct bucket buckets[BUCKET_MAX_SHIFT + 1];
/* mapping metadata */
static struct mapping *mappings;
static unsigned long nmapalloc, nmapfree;
/* if non-zero, all allocations fail */
int t_malloc_fail;
/* if non-zero, all allocations will fail after a countdown */
int t_malloc_fail_after;
/* if non-zero, unintentional allocation failures are fatal */
int t_malloc_fatal;
#if HAVE_UTRACE
/*
* Record malloc() / realloc() / free() events
*/
static void
trace_malloc_event(const void *o, size_t s, const void *p)
{
struct { const void *o; size_t s; const void *p; } mu = { o, s, p };
int serrno = errno;
(void)utrace(&mu, sizeof mu);
errno = serrno;
}
#define UTRACE_MALLOC(s, p) \
trace_malloc_event(NULL, (s), (p))
#define UTRACE_REALLOC(o, s, p) \
trace_malloc_event((o), (s), (p))
#define UTRACE_FREE(o) \
trace_malloc_event((o), 0, NULL)
#else
#define UTRACE_MALLOC(s, p) \
do { (void)(s); (void)(p); } while (0)
#define UTRACE_REALLOC(o, s, p) \
do { (void)(o); (void)(s); (void)(p); } while (0)
#define UTRACE_FREE(o) \
do { (void)(o); } while (0)
#endif
/*
* Return a pointer to inaccessible memory.
*/
static void *
t_malloc_null(void)
{
struct bucket *b;
b = &buckets[0];
if (b->base == NULL) {
b->base = mmap(NULL, BUCKET_SIZE, PROT_NONE,
MAP_ANON | MAP_NOCORE | MAP_NOSYNC | MAP_SHARED, -1, 0);
if (b->base == MAP_FAILED)
abort();
b->top = b->base + BUCKET_SIZE;
b->free = b->unused = b->base;
}
++b->nalloc;
return (b->base);
}
/*
* Allocate a direct mapping. Round up the size to the nearest multiple
* of 8192, call mmap() with the correct arguments, and verify the result.
*/
static void *
t_malloc_mapped(size_t size)
{
struct mapping *m;
size_t msize;
/* prepare metadata */
if ((m = malloc(sizeof *m)) == NULL)
return (NULL);
msize = ((size + 8191) >> 13) << 13;
/* map a sufficiently large region */
m->base = mmap(NULL, msize, PROT_READ | PROT_WRITE,
MAP_ANON | MAP_NOSYNC | MAP_SHARED, -1, 0);
if (m->base == MAP_FAILED) {
free(m);
errno = ENOMEM;
return (NULL);
}
m->top = PADD(m->base, msize);
/* insert into linked list */
m->next = mappings;
m->prev = NULL;
mappings = m;
/* fill the slop */
if (msize > size)
memset(PADD(m->base, size), BUCKET_FILL_FREE, msize - size);
/* done! */
++nmapalloc;
return (m->base);
}
/*
* Allocate from a bucket. Round up the size to the nearest power of two,
* select the appropriate bucket, and return the first free or unused
* block.
*/
static void *
t_malloc_bucket(size_t size)
{
unsigned int shift;
struct bucket *b;
size_t msize;
void *p;
/* select bucket */
for (shift = BUCKET_MIN_SHIFT; (1U << shift) < size; ++shift)
/* nothing */ ;
assert(shift >= BUCKET_MIN_SHIFT && shift <= BUCKET_MAX_SHIFT);
b = &buckets[shift];
msize = 1U << shift;
/* initialize bucket if necessary */
if (b->base == NULL) {
b->base = mmap(NULL, BUCKET_SIZE, PROT_READ | PROT_WRITE,
MAP_ANON | MAP_NOSYNC | MAP_SHARED, -1, 0);
if (b->base == MAP_FAILED)
abort();
b->top = b->base + BUCKET_SIZE;
b->free = b->unused = b->base;
}
/* the bucket is full */
if (b->free == b->top) {
errno = ENOMEM;
return (NULL);
}
/* we will return the first free block */
p = b->free;
/* update the free block pointer */
if (b->free == b->unused) {
/* never been used before, increment free pointer */
b->free = b->unused = b->unused + msize;
} else {
/* previously used, disconnect from free list */
b->free = *(char **)p;
assert(b->free >= b->base && b->free < b->top);
}
/* fill the slop */
if (msize > size)
memset(PADD(p, size), BUCKET_FILL_FREE, msize - size);
/* done! */
++b->nalloc;
return (p);
}
/*
* Core malloc() logic: select the correct backend based on the requested
* allocation size and call it.
*/
void *
t_malloc(size_t size)
{
/* select and call the right backend */
if (size == 0)
return (t_malloc_null());
else if (size > (1U << BUCKET_MAX_SHIFT))
return (t_malloc_mapped(size));
else
return (t_malloc_bucket(size));
}
/*
* Allocate an object of the requested size. According to the standard,
* the content of the allocated memory is undefined; we fill it with
* easily recognizable garbage.
*/
void *
malloc(size_t size)
{
void *p;
if (t_malloc_fail) {
errno = ENOMEM;
return (NULL);
} else if (t_malloc_fail_after > 0 && --t_malloc_fail_after == 0) {
t_malloc_fail = 1;
}
p = t_malloc(size);
UTRACE_MALLOC(size, p);
if (p == NULL) {
if (t_malloc_fatal)
abort();
return (NULL);
}
memset(p, BUCKET_FILL_ALLOC, size);
return (p);
}
/*
* Allocate an array of n objects of the requested size and initialize it
* to zero.
*/
void *
calloc(size_t n, size_t size)
{
void *p;
if (t_malloc_fail) {
errno = ENOMEM;
return (NULL);
} else if (t_malloc_fail_after > 0 && --t_malloc_fail_after == 0) {
t_malloc_fail = 1;
}
p = t_malloc(n * size);
UTRACE_MALLOC(size, p);
if (p == NULL) {
if (t_malloc_fatal)
abort();
return (NULL);
}
memset(p, 0, n * size);
return (p);
}
/*
* Grow or shrink an allocated object, preserving its contents up to the
* smaller of the object's original and new size. According to the
* standard, the object may be either grown or shrunk in place or replaced
* with a new one. We always allocate a new object and free the old one.
*/
void *
realloc(void *o, size_t size)
{
struct mapping *m;
struct bucket *b;
void *p;
size_t osize;
unsigned int shift;
/* corner cases */
if (o == NULL || o == buckets[0].base)
return (malloc(size));
/* was this a direct mapping? */
for (m = mappings; m != NULL; m = m->next) {
if (o == m->base) {
/* found our mapping */
osize = PDIFF(m->top, m->base);
goto found;
}
assert(o < m->base || o >= m->top);
}
/* was this a bucket allocation? */
for (shift = BUCKET_MIN_SHIFT; shift <= BUCKET_MAX_SHIFT; ++shift) {
b = &buckets[shift];
if (o >= b->base && o < b->top) {
/* found our bucket */
assert(PDIFF(o, b->base) % (1U << shift) == 0);
osize = 1U << shift;
goto found;
}
}
/* oops */
abort();
found:
if (t_malloc_fail) {
errno = ENOMEM;
return (NULL);
} else if (t_malloc_fail_after > 0 && --t_malloc_fail_after == 0) {
t_malloc_fail = 1;
}
p = t_malloc(size);
UTRACE_REALLOC(o, size, p);
if (p == NULL) {
if (t_malloc_fatal)
abort();
return (NULL);
}
if (size > osize) {
memcpy(p, o, osize);
memset(p + osize, BUCKET_FILL_ALLOC, size - osize);
} else {
memcpy(p, o, size);
}
free(o);
return (p);
}
/*
* Free an allocated object. According to the standard, the content of
* the memory previously occupied by the object is undefined. We fill it
* with easily recognizable garbage to facilitate debugging use-after-free
* bugs.
*/
void
free(void *p)
{
struct mapping *m;
struct bucket *b;
unsigned int shift;
UTRACE_FREE(p);
/* free(NULL) */
if (p == NULL)
return;
/* was this a zero-size allocation? */
if (p == buckets[0].base) {
++buckets[0].nfree;
return;
}
/* was this a direct mapping? */
for (m = mappings; m != NULL; m = m->next) {
if (p == m->base) {
/* found our mapping */
if (munmap(m->base, PDIFF(m->top, m->base)) != 0)
abort();
if (m->prev != NULL)
m->prev->next = m->next;
if (m->next != NULL)
m->next->prev = m->prev;
if (m == mappings)
mappings = m->next;
/* fall through and free metadata */
p = m;
++nmapfree;
break;
}
assert(p < m->base || p >= m->top);
}
/* was this a bucket allocation? */
for (shift = BUCKET_MIN_SHIFT; shift <= BUCKET_MAX_SHIFT; ++shift) {
b = &buckets[shift];
if (p >= b->base && p < b->top) {
/* found our bucket */
assert(PDIFF(p, b->base) % (1U << shift) == 0);
memset(p, BUCKET_FILL_FREE, 1U << shift);
/* connect the block to the free list */
*(char **)p = b->free;
b->free = p;
++b->nfree;
return;
}
}
/* oops */
abort();
}
/*
* Return a snapshot of the allocator state
*/
size_t
t_malloc_snapshot(void *buf, size_t len)
{
unsigned long snapshot[BUCKET_MAX_SHIFT];
unsigned int i;
if (buf == NULL)
return (sizeof snapshot);
snapshot[0] = nmapalloc - nmapfree;
for (i = 2; i < BUCKET_MIN_SHIFT; ++i)
snapshot[i - 1] = 0;
for (i = BUCKET_MIN_SHIFT; i <= BUCKET_MAX_SHIFT; ++i)
snapshot[i - 1] = buckets[i].nalloc - buckets[i].nfree;
if (len > sizeof snapshot)
len = sizeof snapshot;
memcpy(buf, snapshot, len);
return (sizeof snapshot);
}
/*
* Print allocator statistics
*/
void
t_malloc_printstats(FILE *f)
{
struct bucket *b;
unsigned int shift;
fprintf(f, "%6s %9s %9s %9s\n", "bucket", "alloc", "free", "leaked");
for (shift = BUCKET_MIN_SHIFT; shift <= BUCKET_MAX_SHIFT; ++shift) {
b = &buckets[shift];
if (b->nalloc > 0)
fprintf(f, " 1^%-3u %9lu %9lu %9lu\n",
shift, b->nalloc, b->nfree,
b->nalloc - b->nfree);
}
if (nmapalloc > 0)
fprintf(f, "%6s %9lu %9lu %9lu\n", "mapped",
nmapalloc, nmapfree, nmapalloc - nmapfree);
}
/*
* Test that fails if we leaked memory
*/
static int
t_malloc_leaked(char **desc, void *arg CRYB_UNUSED)
{
struct bucket *b;
unsigned int shift;
unsigned long nleaked;
nleaked = 0;
for (shift = BUCKET_MIN_SHIFT; shift <= BUCKET_MAX_SHIFT; ++shift) {
b = &buckets[shift];
nleaked += b->nalloc - b->nfree;
}
nleaked += nmapalloc - nmapfree;
if (nleaked > 0)
(void)asprintf(desc, "%lu allocation(s) leaked", nleaked);
else
(void)asprintf(desc, "%s", "no memory leaked");
return (nleaked == 0);
}
struct t_test t_memory_leak = {
.func = &t_malloc_leaked,
.arg = NULL,
.desc = "memory leak check",
};