cryb-to/lib/digest/sha1.c

248 lines
7.9 KiB
C

/*-
* Copyright (c) 2012 The University of Oslo
* Copyright (c) 2012-2014 Dag-Erling Smørgrav
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "cryb/impl.h"
#include <stdint.h>
#include <string.h>
#include <cryb/bitwise.h>
#include <cryb/endian.h>
#include <cryb/sha1.h>
static uint32_t sha1_h[5] = {
0x67452301U, 0xefcdab89U, 0x98badcfeU, 0x10325476U, 0xc3d2e1f0U,
};
static uint32_t sha1_k[4] = {
0x5a827999U, 0x6ed9eba1U, 0x8f1bbcdcU, 0xca62c1d6U,
};
void
sha1_init(sha1_ctx *ctx)
{
memset(ctx, 0, sizeof *ctx);
memcpy(ctx->h, sha1_h, sizeof ctx->h);
}
#define sha1_ch(x, y, z) ((x & y) ^ (~x & z))
#define sha1_parity(x, y, z) ((x ^ y ^ z))
#define sha1_maj(x, y, z) (((x & y) ^ (x & z) ^ (y & z)))
#define sha1_step(t, a, f, e, w) \
do { \
uint32_t T = rol32(a, 5) + f + e + sha1_k[t/20] + w[t]; \
e = d; \
d = c; \
c = rol32(b, 30); \
b = a; \
a = T; \
} while (0)
static void
sha1_compute(sha1_ctx *ctx, const uint8_t *block)
{
uint32_t w[80], a, b, c, d, e;
memcpy(w, block, 64);
for (int i = 0; i < 16; ++i)
w[i] = be32toh(w[i]);
for (int i = 16; i < 80; ++i) {
w[i] = w[i-3] ^ w[i-8] ^ w[i-14] ^ w[i-16];
w[i] = rol32(w[i], 1);
}
a = ctx->h[0];
b = ctx->h[1];
c = ctx->h[2];
d = ctx->h[3];
e = ctx->h[4];
sha1_step( 0, a, sha1_ch(b, c, d), e, w);
sha1_step( 1, a, sha1_ch(b, c, d), e, w);
sha1_step( 2, a, sha1_ch(b, c, d), e, w);
sha1_step( 3, a, sha1_ch(b, c, d), e, w);
sha1_step( 4, a, sha1_ch(b, c, d), e, w);
sha1_step( 5, a, sha1_ch(b, c, d), e, w);
sha1_step( 6, a, sha1_ch(b, c, d), e, w);
sha1_step( 7, a, sha1_ch(b, c, d), e, w);
sha1_step( 8, a, sha1_ch(b, c, d), e, w);
sha1_step( 9, a, sha1_ch(b, c, d), e, w);
sha1_step(10, a, sha1_ch(b, c, d), e, w);
sha1_step(11, a, sha1_ch(b, c, d), e, w);
sha1_step(12, a, sha1_ch(b, c, d), e, w);
sha1_step(13, a, sha1_ch(b, c, d), e, w);
sha1_step(14, a, sha1_ch(b, c, d), e, w);
sha1_step(15, a, sha1_ch(b, c, d), e, w);
sha1_step(16, a, sha1_ch(b, c, d), e, w);
sha1_step(17, a, sha1_ch(b, c, d), e, w);
sha1_step(18, a, sha1_ch(b, c, d), e, w);
sha1_step(19, a, sha1_ch(b, c, d), e, w);
sha1_step(20, a, sha1_parity(b, c, d), e, w);
sha1_step(21, a, sha1_parity(b, c, d), e, w);
sha1_step(22, a, sha1_parity(b, c, d), e, w);
sha1_step(23, a, sha1_parity(b, c, d), e, w);
sha1_step(24, a, sha1_parity(b, c, d), e, w);
sha1_step(25, a, sha1_parity(b, c, d), e, w);
sha1_step(26, a, sha1_parity(b, c, d), e, w);
sha1_step(27, a, sha1_parity(b, c, d), e, w);
sha1_step(28, a, sha1_parity(b, c, d), e, w);
sha1_step(29, a, sha1_parity(b, c, d), e, w);
sha1_step(30, a, sha1_parity(b, c, d), e, w);
sha1_step(31, a, sha1_parity(b, c, d), e, w);
sha1_step(32, a, sha1_parity(b, c, d), e, w);
sha1_step(33, a, sha1_parity(b, c, d), e, w);
sha1_step(34, a, sha1_parity(b, c, d), e, w);
sha1_step(35, a, sha1_parity(b, c, d), e, w);
sha1_step(36, a, sha1_parity(b, c, d), e, w);
sha1_step(37, a, sha1_parity(b, c, d), e, w);
sha1_step(38, a, sha1_parity(b, c, d), e, w);
sha1_step(39, a, sha1_parity(b, c, d), e, w);
sha1_step(40, a, sha1_maj(b, c, d), e, w);
sha1_step(41, a, sha1_maj(b, c, d), e, w);
sha1_step(42, a, sha1_maj(b, c, d), e, w);
sha1_step(43, a, sha1_maj(b, c, d), e, w);
sha1_step(44, a, sha1_maj(b, c, d), e, w);
sha1_step(45, a, sha1_maj(b, c, d), e, w);
sha1_step(46, a, sha1_maj(b, c, d), e, w);
sha1_step(47, a, sha1_maj(b, c, d), e, w);
sha1_step(48, a, sha1_maj(b, c, d), e, w);
sha1_step(49, a, sha1_maj(b, c, d), e, w);
sha1_step(50, a, sha1_maj(b, c, d), e, w);
sha1_step(51, a, sha1_maj(b, c, d), e, w);
sha1_step(52, a, sha1_maj(b, c, d), e, w);
sha1_step(53, a, sha1_maj(b, c, d), e, w);
sha1_step(54, a, sha1_maj(b, c, d), e, w);
sha1_step(55, a, sha1_maj(b, c, d), e, w);
sha1_step(56, a, sha1_maj(b, c, d), e, w);
sha1_step(57, a, sha1_maj(b, c, d), e, w);
sha1_step(58, a, sha1_maj(b, c, d), e, w);
sha1_step(59, a, sha1_maj(b, c, d), e, w);
sha1_step(60, a, sha1_parity(b, c, d), e, w);
sha1_step(61, a, sha1_parity(b, c, d), e, w);
sha1_step(62, a, sha1_parity(b, c, d), e, w);
sha1_step(63, a, sha1_parity(b, c, d), e, w);
sha1_step(64, a, sha1_parity(b, c, d), e, w);
sha1_step(65, a, sha1_parity(b, c, d), e, w);
sha1_step(66, a, sha1_parity(b, c, d), e, w);
sha1_step(67, a, sha1_parity(b, c, d), e, w);
sha1_step(68, a, sha1_parity(b, c, d), e, w);
sha1_step(69, a, sha1_parity(b, c, d), e, w);
sha1_step(70, a, sha1_parity(b, c, d), e, w);
sha1_step(71, a, sha1_parity(b, c, d), e, w);
sha1_step(72, a, sha1_parity(b, c, d), e, w);
sha1_step(73, a, sha1_parity(b, c, d), e, w);
sha1_step(74, a, sha1_parity(b, c, d), e, w);
sha1_step(75, a, sha1_parity(b, c, d), e, w);
sha1_step(76, a, sha1_parity(b, c, d), e, w);
sha1_step(77, a, sha1_parity(b, c, d), e, w);
sha1_step(78, a, sha1_parity(b, c, d), e, w);
sha1_step(79, a, sha1_parity(b, c, d), e, w);
ctx->h[0] += a;
ctx->h[1] += b;
ctx->h[2] += c;
ctx->h[3] += d;
ctx->h[4] += e;
}
void
sha1_update(sha1_ctx *ctx, const void *buf, size_t len)
{
size_t copylen;
while (len) {
if (ctx->blocklen > 0 || len < sizeof ctx->block) {
copylen = sizeof ctx->block - ctx->blocklen;
if (copylen > len)
copylen = len;
memcpy(ctx->block + ctx->blocklen, buf, copylen);
ctx->blocklen += copylen;
if (ctx->blocklen == sizeof ctx->block) {
sha1_compute(ctx, ctx->block);
ctx->blocklen = 0;
memset(ctx->block, 0, sizeof ctx->block);
}
} else {
copylen = sizeof ctx->block;
sha1_compute(ctx, buf);
}
ctx->bitlen += copylen * 8;
buf += copylen;
len -= copylen;
}
}
void
sha1_final(sha1_ctx *ctx, uint8_t *digest)
{
uint32_t hi, lo;
ctx->block[ctx->blocklen++] = 0x80;
if (ctx->blocklen > 56) {
sha1_compute(ctx, ctx->block);
ctx->blocklen = 0;
memset(ctx->block, 0, sizeof ctx->block);
}
hi = htobe32(ctx->bitlen >> 32);
lo = htobe32(ctx->bitlen & 0xffffffffUL);
memcpy(ctx->block + 56, &hi, 4);
memcpy(ctx->block + 60, &lo, 4);
ctx->blocklen = 64;
sha1_compute(ctx, ctx->block);
for (int i = 0; i < 5; ++i)
ctx->h[i] = htobe32(ctx->h[i]);
memcpy(digest, ctx->h, 20);
memset(ctx, 0, sizeof *ctx);
}
void
sha1_complete(const void *buf, size_t len, uint8_t *digest)
{
sha1_ctx ctx;
sha1_init(&ctx);
sha1_update(&ctx, buf, len);
sha1_final(&ctx, digest);
}
digest_algorithm sha1_digest = {
.name = "sha1",
.contextlen = sizeof(sha1_ctx),
.blocklen = SHA1_BLOCK_LEN,
.digestlen = SHA1_DIGEST_LEN,
.init = (digest_init_func)sha1_init,
.update = (digest_update_func)sha1_update,
.final = (digest_final_func)sha1_final,
.complete = (digest_complete_func)sha1_complete,
};