mirror of
https://github.com/cryb-to/cryb-to.git
synced 2024-12-18 10:34:53 +00:00
c6536641c5
- Use the new vector byte-order conversion functions where appropriate. - Use memset_s() instead of memset() where appropriate. - Use consistent names and types for function arguments. - Reindent, rename and reorganize to conform to Cryb style and idiom. SHA224 and SHA256 were left mostly unchanged. MD2 and MD4 were completely rewritten as the previous versions (taken from XySSL) seem to have been copied from RSAREF. This breaks the ABI as some context structures have grown or shrunk and some function arguments have been changed from int to size_t.
296 lines
8.2 KiB
C
296 lines
8.2 KiB
C
/*-
|
|
* Copyright (c) 2005-2013 Colin Percival
|
|
* Copyright (c) 2017 Dag-Erling Smørgrav
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote
|
|
* products derived from this software without specific prior written
|
|
* permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "cryb/impl.h"
|
|
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
#include <cryb/bitwise.h>
|
|
#include <cryb/endian.h>
|
|
#include <cryb/memset_s.h>
|
|
|
|
#include <cryb/sha256.h>
|
|
|
|
/* Elementary functions used by SHA256 */
|
|
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
|
|
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
|
|
#define S0(x) (ror32(x, 2) ^ ror32(x, 13) ^ ror32(x, 22))
|
|
#define S1(x) (ror32(x, 6) ^ ror32(x, 11) ^ ror32(x, 25))
|
|
#define s0(x) (ror32(x, 7) ^ ror32(x, 18) ^ (x >> 3))
|
|
#define s1(x) (ror32(x, 17) ^ ror32(x, 19) ^ (x >> 10))
|
|
|
|
/* SHA256 round function */
|
|
#define RND(a, b, c, d, e, f, g, h, k) \
|
|
t0 = h + S1(e) + Ch(e, f, g) + k; \
|
|
t1 = S0(a) + Maj(a, b, c); \
|
|
d += t0; \
|
|
h = t0 + t1;
|
|
|
|
/* Adjusted round function for rotating state */
|
|
#define RNDr(S, W, i, k) \
|
|
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
|
|
S[(66 - i) % 8], S[(67 - i) % 8], \
|
|
S[(68 - i) % 8], S[(69 - i) % 8], \
|
|
S[(70 - i) % 8], S[(71 - i) % 8], \
|
|
W[i] + k)
|
|
|
|
/*
|
|
* SHA256 block compression function. The 256-bit state is transformed via
|
|
* the 512-bit input block to produce a new state.
|
|
*/
|
|
static void
|
|
sha256_Transform(uint32_t * state, const uint8_t block[64])
|
|
{
|
|
uint32_t W[64];
|
|
uint32_t S[8];
|
|
uint32_t t0, t1;
|
|
int i;
|
|
|
|
/* 1. Prepare message schedule W. */
|
|
be32decv(W, block, 16);
|
|
for (i = 16; i < 64; i++)
|
|
W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
|
|
|
|
/* 2. Initialize working variables. */
|
|
memcpy(S, state, 32);
|
|
|
|
/* 3. Mix. */
|
|
RNDr(S, W, 0, 0x428a2f98);
|
|
RNDr(S, W, 1, 0x71374491);
|
|
RNDr(S, W, 2, 0xb5c0fbcf);
|
|
RNDr(S, W, 3, 0xe9b5dba5);
|
|
RNDr(S, W, 4, 0x3956c25b);
|
|
RNDr(S, W, 5, 0x59f111f1);
|
|
RNDr(S, W, 6, 0x923f82a4);
|
|
RNDr(S, W, 7, 0xab1c5ed5);
|
|
RNDr(S, W, 8, 0xd807aa98);
|
|
RNDr(S, W, 9, 0x12835b01);
|
|
RNDr(S, W, 10, 0x243185be);
|
|
RNDr(S, W, 11, 0x550c7dc3);
|
|
RNDr(S, W, 12, 0x72be5d74);
|
|
RNDr(S, W, 13, 0x80deb1fe);
|
|
RNDr(S, W, 14, 0x9bdc06a7);
|
|
RNDr(S, W, 15, 0xc19bf174);
|
|
RNDr(S, W, 16, 0xe49b69c1);
|
|
RNDr(S, W, 17, 0xefbe4786);
|
|
RNDr(S, W, 18, 0x0fc19dc6);
|
|
RNDr(S, W, 19, 0x240ca1cc);
|
|
RNDr(S, W, 20, 0x2de92c6f);
|
|
RNDr(S, W, 21, 0x4a7484aa);
|
|
RNDr(S, W, 22, 0x5cb0a9dc);
|
|
RNDr(S, W, 23, 0x76f988da);
|
|
RNDr(S, W, 24, 0x983e5152);
|
|
RNDr(S, W, 25, 0xa831c66d);
|
|
RNDr(S, W, 26, 0xb00327c8);
|
|
RNDr(S, W, 27, 0xbf597fc7);
|
|
RNDr(S, W, 28, 0xc6e00bf3);
|
|
RNDr(S, W, 29, 0xd5a79147);
|
|
RNDr(S, W, 30, 0x06ca6351);
|
|
RNDr(S, W, 31, 0x14292967);
|
|
RNDr(S, W, 32, 0x27b70a85);
|
|
RNDr(S, W, 33, 0x2e1b2138);
|
|
RNDr(S, W, 34, 0x4d2c6dfc);
|
|
RNDr(S, W, 35, 0x53380d13);
|
|
RNDr(S, W, 36, 0x650a7354);
|
|
RNDr(S, W, 37, 0x766a0abb);
|
|
RNDr(S, W, 38, 0x81c2c92e);
|
|
RNDr(S, W, 39, 0x92722c85);
|
|
RNDr(S, W, 40, 0xa2bfe8a1);
|
|
RNDr(S, W, 41, 0xa81a664b);
|
|
RNDr(S, W, 42, 0xc24b8b70);
|
|
RNDr(S, W, 43, 0xc76c51a3);
|
|
RNDr(S, W, 44, 0xd192e819);
|
|
RNDr(S, W, 45, 0xd6990624);
|
|
RNDr(S, W, 46, 0xf40e3585);
|
|
RNDr(S, W, 47, 0x106aa070);
|
|
RNDr(S, W, 48, 0x19a4c116);
|
|
RNDr(S, W, 49, 0x1e376c08);
|
|
RNDr(S, W, 50, 0x2748774c);
|
|
RNDr(S, W, 51, 0x34b0bcb5);
|
|
RNDr(S, W, 52, 0x391c0cb3);
|
|
RNDr(S, W, 53, 0x4ed8aa4a);
|
|
RNDr(S, W, 54, 0x5b9cca4f);
|
|
RNDr(S, W, 55, 0x682e6ff3);
|
|
RNDr(S, W, 56, 0x748f82ee);
|
|
RNDr(S, W, 57, 0x78a5636f);
|
|
RNDr(S, W, 58, 0x84c87814);
|
|
RNDr(S, W, 59, 0x8cc70208);
|
|
RNDr(S, W, 60, 0x90befffa);
|
|
RNDr(S, W, 61, 0xa4506ceb);
|
|
RNDr(S, W, 62, 0xbef9a3f7);
|
|
RNDr(S, W, 63, 0xc67178f2);
|
|
|
|
/* 4. Mix local working variables into global state. */
|
|
for (i = 0; i < 8; i++)
|
|
state[i] += S[i];
|
|
}
|
|
|
|
static uint8_t PAD[64] = {
|
|
0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
};
|
|
|
|
/* Add padding and terminating bit-count. */
|
|
static void
|
|
sha256_pad(sha256_ctx * ctx)
|
|
{
|
|
uint8_t len[8];
|
|
uint32_t r, plen;
|
|
|
|
/*
|
|
* Convert length to a vector of bytes -- we do this now rather
|
|
* than later because the length will change after we pad.
|
|
*/
|
|
be64enc(len, ctx->count);
|
|
|
|
/* Add 1--64 bytes so that the resulting length is 56 mod 64. */
|
|
r = (ctx->count >> 3) & 0x3f;
|
|
plen = (r < 56) ? (56 - r) : (120 - r);
|
|
sha256_update(ctx, PAD, (size_t)plen);
|
|
|
|
/* Add the terminating bit-count. */
|
|
sha256_update(ctx, len, 8);
|
|
}
|
|
|
|
/**
|
|
* sha256_init(ctx):
|
|
* Initialize the SHA256 context ${ctx}.
|
|
*/
|
|
void
|
|
sha256_init(sha256_ctx * ctx)
|
|
{
|
|
|
|
/* Zero bits processed so far. */
|
|
ctx->count = 0;
|
|
|
|
/* Magic initialization constants. */
|
|
ctx->state[0] = 0x6A09E667;
|
|
ctx->state[1] = 0xBB67AE85;
|
|
ctx->state[2] = 0x3C6EF372;
|
|
ctx->state[3] = 0xA54FF53A;
|
|
ctx->state[4] = 0x510E527F;
|
|
ctx->state[5] = 0x9B05688C;
|
|
ctx->state[6] = 0x1F83D9AB;
|
|
ctx->state[7] = 0x5BE0CD19;
|
|
}
|
|
|
|
/**
|
|
* sha256_update(ctx, in, len):
|
|
* Input ${len} bytes from ${in} into the SHA256 context ${ctx}.
|
|
*/
|
|
void
|
|
sha256_update(sha256_ctx * ctx, const void *in, size_t len)
|
|
{
|
|
uint32_t r;
|
|
const uint8_t *src = in;
|
|
|
|
/* Return immediately if we have nothing to do. */
|
|
if (len == 0)
|
|
return;
|
|
|
|
/* Number of bytes left in the buffer from previous updates. */
|
|
r = (ctx->count >> 3) & 0x3f;
|
|
|
|
/* Update number of bits. */
|
|
ctx->count += (uint64_t)(len) << 3;
|
|
|
|
/* Handle the case where we don't need to perform any transforms. */
|
|
if (len < 64 - r) {
|
|
memcpy(&ctx->buf[r], src, len);
|
|
return;
|
|
}
|
|
|
|
/* Finish the current block. */
|
|
memcpy(&ctx->buf[r], src, 64 - r);
|
|
sha256_Transform(ctx->state, ctx->buf);
|
|
src += 64 - r;
|
|
len -= 64 - r;
|
|
|
|
/* Perform complete blocks. */
|
|
while (len >= 64) {
|
|
sha256_Transform(ctx->state, src);
|
|
src += 64;
|
|
len -= 64;
|
|
}
|
|
|
|
/* Copy left over data into buffer. */
|
|
memcpy(ctx->buf, src, len);
|
|
}
|
|
|
|
/**
|
|
* sha256_final(ctx, digest):
|
|
* Output the SHA256 hash of the data input to the context ${ctx} into the
|
|
* buffer ${digest}.
|
|
*/
|
|
void
|
|
sha256_final(sha256_ctx * ctx, uint8_t *digest)
|
|
{
|
|
|
|
/* Add padding. */
|
|
sha256_pad(ctx);
|
|
|
|
/* Write the hash. */
|
|
be32encv(digest, ctx->state, SHA256_DIGEST_LEN / 4);
|
|
|
|
/* Clear the context state. */
|
|
memset_s(ctx, 0, sizeof *ctx, sizeof *ctx);
|
|
}
|
|
|
|
/**
|
|
* sha256_complete(in, len, digest):
|
|
* Compute the SHA256 hash of ${len} bytes from $in} and write it to ${digest}.
|
|
*/
|
|
void
|
|
sha256_complete(const void *in, size_t len, uint8_t *digest)
|
|
{
|
|
sha256_ctx ctx;
|
|
|
|
sha256_init(&ctx);
|
|
sha256_update(&ctx, in, len);
|
|
sha256_final(&ctx, digest);
|
|
}
|
|
|
|
digest_algorithm sha256_digest = {
|
|
.name = "sha256",
|
|
.contextlen = sizeof(sha256_ctx),
|
|
.blocklen = SHA256_BLOCK_LEN,
|
|
.digestlen = SHA256_DIGEST_LEN,
|
|
.init = (digest_init_func)sha256_init,
|
|
.update = (digest_update_func)sha256_update,
|
|
.final = (digest_final_func)sha256_final,
|
|
.complete = (digest_complete_func)sha256_complete,
|
|
};
|