mirror of
https://github.com/cryb-to/cryb-to.git
synced 2025-01-19 02:01:11 +00:00
64a2da2b84
Introduce a t_malloc_fatal flag that makes unintentional allocation failures fatal. This reduces the need for error handling in tests. Enable that flag in t_main(). Test programs that don't want it can override it in t_prepare().
381 lines
9.9 KiB
C
381 lines
9.9 KiB
C
/*
|
|
* Copyright (c) 2014 Dag-Erling Smørgrav
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote
|
|
* products derived from this software without specific prior written
|
|
* permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "cryb/impl.h"
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/mman.h>
|
|
|
|
#include <assert.h>
|
|
#include <errno.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "t.h"
|
|
|
|
/*
|
|
* Very simple, non-thread-safe malloc() implementation tailored for unit
|
|
* tests. The most important feature of this implementation is the
|
|
* t_malloc_fail flag, which can be used to force malloc(), calloc() and
|
|
* realloc() calls to fail.
|
|
*
|
|
* Allocations are satisfied either from a bucket or by direct mapping.
|
|
* The allocation size is first rounded to the nearest power of two or 16,
|
|
* whichever is largest. If this number is larger than the maximum bucket
|
|
* block size, a direct mapping is used. Otherwise, the appropriate
|
|
* bucket is selected and the first free block from that bucket is
|
|
* returned. If there are no free blocks in the bucket, the allocation
|
|
* fails.
|
|
*
|
|
* Bucket metadata is stored in a static array; the buckets themselves are
|
|
* allocated using mmap(). The free list is maintained by keeping a
|
|
* pointer to the first free block in the bucket metadata, and storing a
|
|
* pointer to the next free block at the start of each free block. These
|
|
* pointers are not preinitialized, which avoid faulting in large amounts
|
|
* of memory that will never be used.
|
|
*
|
|
* Direct mappings are allocated using mmap(). Metadata for each mapping
|
|
* is stored in a malloc()ed struct in a linked list.
|
|
*
|
|
* Attempts to allocate 0 bytes return a pointer to address space which is
|
|
* mmap()ed with PROT_NONE, causing any attempt to use it to fail.
|
|
*
|
|
* The data structures used are arrays and linked lists, which would be
|
|
* unacceptably inefficient for production use but are good enough for
|
|
* testing.
|
|
*/
|
|
|
|
#define PADD(p, c) (void *)((intptr_t)(p) + (size_t)(c))
|
|
#define PSUB(p, c) (void *)((intptr_t)(p) + (size_t)(c))
|
|
#define PDIFF(p1, p2) (size_t)((char *)(p1) - (char *)(p2))
|
|
|
|
/* base 2 logarithm of the minimum and maximum block sizes */
|
|
#define BUCKET_MIN_SHIFT 4
|
|
#define BUCKET_MAX_SHIFT 16
|
|
|
|
/* bucket size */
|
|
#define BUCKET_SIZE (16*1024*1024)
|
|
|
|
/* byte values used to fill allocated and unallocated blocks */
|
|
#define BUCKET_FILL_ALLOC 0xaa
|
|
#define BUCKET_FILL_FREE 0x55
|
|
|
|
struct bucket {
|
|
void *base; /* bottom of bucket */
|
|
void *top; /* top of bucket */
|
|
void *free; /* first free block */
|
|
void *unused; /* first never-used block */
|
|
};
|
|
|
|
struct mapping {
|
|
void *base; /* base address */
|
|
void *top; /* end address */
|
|
struct mapping *prev, *next; /* linked list */
|
|
};
|
|
|
|
/* bucket metadata */
|
|
static struct bucket buckets[BUCKET_MAX_SHIFT + 1];
|
|
|
|
/* mapping metadata */
|
|
static struct mapping *mappings;
|
|
|
|
/* if non-zero, all allocations fail */
|
|
int t_malloc_fail;
|
|
|
|
/* if non-zero, unintentional allocation failures are fatal */
|
|
int t_malloc_fatal;
|
|
|
|
/*
|
|
* Return a pointer to inaccessible memory.
|
|
*/
|
|
static void *
|
|
t_malloc_null(void)
|
|
{
|
|
struct bucket *b;
|
|
|
|
b = &buckets[0];
|
|
if (b->base == NULL) {
|
|
b->base = mmap(NULL, BUCKET_SIZE, PROT_NONE,
|
|
MAP_ANON | MAP_NOCORE | MAP_NOSYNC | MAP_SHARED, -1, 0);
|
|
if (b->base == NULL)
|
|
abort();
|
|
b->top = b->base + BUCKET_SIZE;
|
|
b->free = b->unused = b->base;
|
|
}
|
|
return (b->base);
|
|
}
|
|
|
|
/*
|
|
* Allocate a direct mapping. Round up the size to the nearest multiple
|
|
* of 8192, call mmap() with the correct arguments, and verify the result.
|
|
*/
|
|
static void *
|
|
t_malloc_mapped(size_t size)
|
|
{
|
|
struct mapping *m;
|
|
|
|
if ((m = malloc(sizeof *m)) == NULL)
|
|
return (NULL);
|
|
size = ((size + 8191) >> 13) << 13;
|
|
m->base = mmap(NULL, size, PROT_READ | PROT_WRITE,
|
|
MAP_ANON | MAP_NOSYNC | MAP_SHARED, -1, 0);
|
|
if (m->base == NULL) {
|
|
free(m);
|
|
errno = ENOMEM;
|
|
return (NULL);
|
|
}
|
|
m->top = PADD(m->base, size);
|
|
m->next = mappings;
|
|
m->prev = NULL;
|
|
mappings = m;
|
|
return (m->base);
|
|
}
|
|
|
|
/*
|
|
* Allocate from a bucket. Round up the size to the nearest power of two,
|
|
* select the appropriate bucket, and return the first free or unused
|
|
* block.
|
|
*/
|
|
static void *
|
|
t_malloc_bucket(size_t size)
|
|
{
|
|
unsigned int shift;
|
|
struct bucket *b;
|
|
void *p;
|
|
|
|
/* select bucket */
|
|
for (shift = BUCKET_MIN_SHIFT; (1 << shift) < size; ++shift)
|
|
/* nothing */ ;
|
|
assert(shift >= BUCKET_MIN_SHIFT && shift <= BUCKET_MAX_SHIFT);
|
|
b = &buckets[shift];
|
|
|
|
/* initialize bucket if necessary */
|
|
if (b->base == NULL) {
|
|
b->base = mmap(NULL, BUCKET_SIZE, PROT_READ | PROT_WRITE,
|
|
MAP_ANON | MAP_NOSYNC | MAP_SHARED, -1, 0);
|
|
if (b->base == NULL)
|
|
abort();
|
|
b->top = b->base + BUCKET_SIZE;
|
|
b->free = b->unused = b->base;
|
|
}
|
|
|
|
/* the bucket is full */
|
|
if (b->free == b->top) {
|
|
errno = ENOMEM;
|
|
return (NULL);
|
|
}
|
|
|
|
/* we will return the first free block */
|
|
p = b->free;
|
|
|
|
/* update the free block pointer */
|
|
if (b->free == b->unused) {
|
|
/* never been used before, increment free pointer */
|
|
b->free = b->unused = b->unused + (1 << shift);
|
|
} else {
|
|
/* previously used, disconnect from free list */
|
|
b->free = *(char **)p;
|
|
assert(b->free >= b->base && b->free < b->top);
|
|
}
|
|
|
|
/* done! */
|
|
return (p);
|
|
}
|
|
|
|
/*
|
|
* Core malloc() logic: select the correct backend based on the requested
|
|
* allocation size and call it.
|
|
*/
|
|
void *
|
|
t_malloc(size_t size)
|
|
{
|
|
|
|
/* select and call the right backend */
|
|
if (size == 0)
|
|
return (t_malloc_null());
|
|
else if (size > (1 << BUCKET_MAX_SHIFT))
|
|
return (t_malloc_mapped(size));
|
|
else
|
|
return (t_malloc_bucket(size));
|
|
}
|
|
|
|
/*
|
|
* Allocate an object of the requested size. According to the standard,
|
|
* the content of the allocated memory is undefined; we fill it with
|
|
* easily recognizable garbage.
|
|
*/
|
|
void *
|
|
malloc(size_t size)
|
|
{
|
|
void *p;
|
|
|
|
if (t_malloc_fail) {
|
|
errno = ENOMEM;
|
|
return (NULL);
|
|
}
|
|
p = t_malloc(size);
|
|
if (p == NULL && t_malloc_fatal)
|
|
abort();
|
|
memset(p, BUCKET_FILL_ALLOC, size);
|
|
/* XXX fill the slop with garbage */
|
|
return (p);
|
|
}
|
|
|
|
/*
|
|
* Allocate an array of n objects of the requested size and initialize it
|
|
* to zero.
|
|
*/
|
|
void *
|
|
calloc(size_t n, size_t size)
|
|
{
|
|
void *p;
|
|
|
|
if (t_malloc_fail) {
|
|
errno = ENOMEM;
|
|
return (NULL);
|
|
}
|
|
p = t_malloc(n * size);
|
|
if (p == NULL && t_malloc_fatal)
|
|
abort();
|
|
memset(p, 0, n * size);
|
|
/* XXX fill the slop with garbage */
|
|
return (p);
|
|
}
|
|
|
|
/*
|
|
* Grow or shrink an allocated object, preserving its contents up to the
|
|
* smaller of the object's original and new size. According to the
|
|
* standard, the object may be either grown or shrunk in place or replaced
|
|
* with a new one. We always allocate a new object and free the old one.
|
|
*/
|
|
void *
|
|
realloc(void *o, size_t size)
|
|
{
|
|
struct mapping *m;
|
|
struct bucket *b;
|
|
void *p;
|
|
size_t osize;
|
|
unsigned int shift;
|
|
|
|
/* corner cases */
|
|
if (o == NULL || o == buckets[0].base)
|
|
return (malloc(size));
|
|
|
|
/* was this a direct mapping? */
|
|
for (m = mappings; m != NULL; m = m->next) {
|
|
if (o == m->base) {
|
|
/* found our mapping */
|
|
osize = PDIFF(m->top, m->base);
|
|
goto found;
|
|
}
|
|
assert(o < m->base || o >= m->top);
|
|
}
|
|
|
|
/* was this a bucket allocation? */
|
|
for (shift = BUCKET_MIN_SHIFT; shift <= BUCKET_MAX_SHIFT; ++shift) {
|
|
b = &buckets[shift];
|
|
if (o >= b->base && o < b->top) {
|
|
/* found our bucket */
|
|
assert(PDIFF(o, b->base) % (1 << shift) == 0);
|
|
osize = 1 << shift;
|
|
goto found;
|
|
}
|
|
}
|
|
|
|
/* oops */
|
|
abort();
|
|
|
|
found:
|
|
if ((p = t_malloc(size)) == NULL) {
|
|
if (t_malloc_fatal)
|
|
abort();
|
|
return (NULL);
|
|
}
|
|
if (size > osize)
|
|
memcpy(p, o, osize);
|
|
else
|
|
memcpy(p, o, size);
|
|
/* XXX fill the slop with garbage */
|
|
free(o);
|
|
return (p);
|
|
}
|
|
|
|
/*
|
|
* Free an allocated object. According to the standard, the content of
|
|
* the memory previously occupied by the object is undefined. We fill it
|
|
* with easily recognizable garbage to facilitate debugging use-after-free
|
|
* bugs.
|
|
*/
|
|
void
|
|
free(void *p)
|
|
{
|
|
struct mapping *m;
|
|
struct bucket *b;
|
|
unsigned int shift;
|
|
|
|
/* was this a zero-size allocation? */
|
|
if (p == buckets[0].base)
|
|
return;
|
|
|
|
/* was this a direct mapping? */
|
|
for (m = mappings; m != NULL; m = m->next) {
|
|
if (p == m->base) {
|
|
/* found our mapping */
|
|
if (munmap(m->base, PDIFF(m->top, m->base)) != 0)
|
|
abort();
|
|
if (m->prev != NULL)
|
|
m->prev->next = m->next;
|
|
if (m->next != NULL)
|
|
m->next->prev = m->prev;
|
|
if (m == mappings)
|
|
mappings = m->next;
|
|
/* fall through and free metadata */
|
|
p = m;
|
|
break;
|
|
}
|
|
assert(p < m->base || p >= m->top);
|
|
}
|
|
|
|
/* was this a bucket allocation? */
|
|
for (shift = BUCKET_MIN_SHIFT; shift <= BUCKET_MAX_SHIFT; ++shift) {
|
|
b = &buckets[shift];
|
|
if (p >= b->base && p < b->top) {
|
|
/* found our bucket */
|
|
assert(PDIFF(p, b->base) % (1 << shift) == 0);
|
|
memset(p, BUCKET_FILL_FREE, 1 << shift);
|
|
/* connect the block to the free list */
|
|
*(char **)p = b->free;
|
|
b->free = p;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* oops */
|
|
abort();
|
|
}
|