mirror of
https://github.com/cryb-to/cryb-to.git
synced 2024-11-27 08:05:42 +00:00
244 lines
6.6 KiB
C
244 lines
6.6 KiB
C
/*-
|
||
* Copyright (c) 2012 The University of Oslo
|
||
* Copyright (c) 2012-2014 Dag-Erling Smørgrav
|
||
* All rights reserved.
|
||
*
|
||
* Redistribution and use in source and binary forms, with or without
|
||
* modification, are permitted provided that the following conditions
|
||
* are met:
|
||
* 1. Redistributions of source code must retain the above copyright
|
||
* notice, this list of conditions and the following disclaimer.
|
||
* 2. Redistributions in binary form must reproduce the above copyright
|
||
* notice, this list of conditions and the following disclaimer in the
|
||
* documentation and/or other materials provided with the distribution.
|
||
* 3. The name of the author may not be used to endorse or promote
|
||
* products derived from this software without specific prior written
|
||
* permission.
|
||
*
|
||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||
* SUCH DAMAGE.
|
||
*/
|
||
|
||
#include "cryb/impl.h"
|
||
|
||
#include <stdint.h>
|
||
#include <stdio.h>
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
#include <time.h>
|
||
|
||
#include <cryb/test.h>
|
||
|
||
#if WITH_OPENSSL
|
||
|
||
#include <openssl/sha.h>
|
||
|
||
#define SHA1_DIGEST_LEN SHA_DIGEST_LENGTH
|
||
|
||
static void
|
||
t_sha1_complete(const void *msg, size_t msglen, uint8_t *digest)
|
||
{
|
||
SHA_CTX ctx;
|
||
|
||
SHA1_Init(&ctx);
|
||
SHA1_Update(&ctx, msg, msglen);
|
||
SHA1_Final(digest, &ctx);
|
||
}
|
||
|
||
#else
|
||
|
||
#include <cryb/sha1.h>
|
||
|
||
#define t_sha1_complete(msg, msglen, digest) \
|
||
sha1_complete(msg, msglen, digest)
|
||
|
||
#endif
|
||
|
||
static struct t_vector {
|
||
const char *desc;
|
||
const char *msg;
|
||
const uint8_t digest[SHA1_DIGEST_LEN];
|
||
} t_sha1_vectors[] = {
|
||
{
|
||
"zero-length message",
|
||
"",
|
||
{
|
||
0xda, 0x39, 0xa3, 0xee, 0x5e, 0x6b, 0x4b, 0x0d,
|
||
0x32, 0x55, 0xbf, 0xef, 0x95, 0x60, 0x18, 0x90,
|
||
0xaf, 0xd8, 0x07, 0x09,
|
||
}
|
||
},
|
||
{
|
||
"FIPS 180-2 A.1 (one-block message)",
|
||
"abc",
|
||
{
|
||
0xa9, 0x99, 0x3e, 0x36, 0x47, 0x06, 0x81, 0x6a,
|
||
0xba, 0x3e, 0x25, 0x71, 0x78, 0x50, 0xc2, 0x6c,
|
||
0x9c, 0xd0, 0xd8, 0x9d,
|
||
}
|
||
},
|
||
{
|
||
/*
|
||
* This message is *just* long enough to necessitate a
|
||
* second block, which consists entirely of padding.
|
||
*/
|
||
"FIPS 180-2 A.2 (multi-block message)",
|
||
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
|
||
{
|
||
0x84, 0x98, 0x3e, 0x44, 0x1c, 0x3b, 0xd2, 0x6e,
|
||
0xba, 0xae, 0x4a, 0xa1, 0xf9, 0x51, 0x29, 0xe5,
|
||
0xe5, 0x46, 0x70, 0xf1,
|
||
}
|
||
},
|
||
{
|
||
/*
|
||
* 1,000,000 x 'a', filled in by t_prepare()
|
||
*/
|
||
"FIPS 180-2 A.3 (long message)",
|
||
NULL,
|
||
{
|
||
0x34, 0xaa, 0x97, 0x3c, 0xd4, 0xc4, 0xda, 0xa4,
|
||
0xf6, 0x1e, 0xeb, 0x2b, 0xdb, 0xad, 0x27, 0x31,
|
||
0x65, 0x34, 0x01, 0x6f,
|
||
},
|
||
},
|
||
{
|
||
/*
|
||
* One of the MD5 test vectors, included for the "short
|
||
* update" test.
|
||
*/
|
||
"\"1234567890\"x8",
|
||
"1234567890123456789012345678901234567890"
|
||
"1234567890123456789012345678901234567890",
|
||
{
|
||
0x50, 0xab, 0xf5, 0x70, 0x6a, 0x15, 0x09, 0x90,
|
||
0xa0, 0x8b, 0x2c, 0x5e, 0xa4, 0x0f, 0xa0, 0xe5,
|
||
0x85, 0x55, 0x47, 0x32,
|
||
},
|
||
},
|
||
};
|
||
|
||
/*
|
||
* Unit test: compute the SHA1 sum of the specified string and compare it
|
||
* to the expected result.
|
||
*/
|
||
static int
|
||
t_sha1_vector(char **desc CRYB_UNUSED, void *arg)
|
||
{
|
||
struct t_vector *vector = (struct t_vector *)arg;
|
||
uint8_t digest[SHA1_DIGEST_LEN];
|
||
char msg[1000000];
|
||
|
||
if (vector->msg) {
|
||
t_sha1_complete(vector->msg, strlen(vector->msg), digest);
|
||
} else {
|
||
/* special case for FIPS test vector 3 */
|
||
memset(msg, 'a', 1000000);
|
||
t_sha1_complete(msg, 1000000, digest);
|
||
}
|
||
return (t_compare_mem(vector->digest, digest, SHA1_DIGEST_LEN));
|
||
}
|
||
|
||
|
||
#if !defined(WITH_OPENSSL) && !defined(WITH_RSAREF)
|
||
/*
|
||
* Various corner cases and error conditions
|
||
*/
|
||
static int
|
||
t_sha1_short_updates(char **desc CRYB_UNUSED, void *arg)
|
||
{
|
||
struct t_vector *vector = (struct t_vector *)arg;
|
||
uint8_t digest[SHA1_DIGEST_LEN];
|
||
sha1_ctx ctx;
|
||
int i, len;
|
||
|
||
sha1_init(&ctx);
|
||
len = strlen(vector->msg);
|
||
for (i = 0; i + 5 < len; i += 5)
|
||
sha1_update(&ctx, vector->msg + i, 5);
|
||
sha1_update(&ctx, vector->msg + i, len - i);
|
||
sha1_final(&ctx, digest);
|
||
return (memcmp(digest, vector->digest, SHA1_DIGEST_LEN) == 0);
|
||
}
|
||
#endif
|
||
|
||
/*
|
||
* Performance test: measure the time spent computing the SHA1 sum of a
|
||
* message of the specified length.
|
||
*/
|
||
#define T_PERF_ITERATIONS 1000
|
||
static int
|
||
t_sha1_perf(char **desc, void *arg)
|
||
{
|
||
struct timespec ts, te;
|
||
unsigned long ns;
|
||
uint8_t digest[SHA1_DIGEST_LEN];
|
||
size_t msglen = *(size_t *)arg;
|
||
char msg[msglen];
|
||
|
||
clock_gettime(CLOCK_MONOTONIC, &ts);
|
||
for (int i = 0; i < T_PERF_ITERATIONS; ++i)
|
||
t_sha1_complete(msg, msglen, digest);
|
||
clock_gettime(CLOCK_MONOTONIC, &te);
|
||
ns = te.tv_sec * 1000000000LU + te.tv_nsec;
|
||
ns -= ts.tv_sec * 1000000000LU + ts.tv_nsec;
|
||
asprintf(desc, "%zu bytes: %d iterations in %'lu ns",
|
||
msglen, T_PERF_ITERATIONS, ns);
|
||
return (1);
|
||
}
|
||
|
||
|
||
/***************************************************************************
|
||
* Boilerplate
|
||
*/
|
||
|
||
int
|
||
t_prepare(int argc, char *argv[])
|
||
{
|
||
int i, n;
|
||
|
||
(void)argc;
|
||
(void)argv;
|
||
n = sizeof t_sha1_vectors / sizeof t_sha1_vectors[0];
|
||
for (i = 0; i < n; ++i)
|
||
t_add_test(t_sha1_vector, &t_sha1_vectors[i],
|
||
t_sha1_vectors[i].desc);
|
||
#if !defined(WITH_OPENSSL) && !defined(WITH_RSAREF)
|
||
/*
|
||
* Run test vector 5 (md5 test vector 7, which is 80 characters
|
||
* long) 5 characters at a time. This tests a) appending data to
|
||
* an underfull block and b) appending more data to an underfull
|
||
* block than it has room for (since 64 % 5 != 0). Test vector 4
|
||
* and 5 already exercised the code path for computing a block
|
||
* directly from source (without copying it in), and all the test
|
||
* vectors except vector 1 exercised the general case of copying a
|
||
* small amount of data in without crossing the block boundary.
|
||
*/
|
||
t_add_test(t_sha1_short_updates, &t_sha1_vectors[4],
|
||
"multiple short updates");
|
||
#endif
|
||
if (t_str_is_true(getenv("CRYB_PERFTEST"))) {
|
||
static size_t one = 1, thousand = 1000, million = 1000000;
|
||
t_add_test(t_sha1_perf, &one,
|
||
"performance test (1 byte)");
|
||
t_add_test(t_sha1_perf, &thousand,
|
||
"performance test (1,000 bytes)");
|
||
t_add_test(t_sha1_perf, &million,
|
||
"performance test (1,000,000 bytes)");
|
||
}
|
||
return (0);
|
||
}
|
||
|
||
void
|
||
t_cleanup(void)
|
||
{
|
||
}
|