34 lines
1.1 KiB
C++
34 lines
1.1 KiB
C++
|
GridPosition PacManAI::pelletClosestToPacman(GridPosition pacmanGridPosition,
|
||
|
std::vector<GridPosition> & pellets) {
|
||
|
|
||
|
auto pelletSort = [&pacmanGridPosition](GridPosition pelletA, GridPosition pelletB) {
|
||
|
double distanceA = positionDistance(pacmanGridPosition, pelletA);
|
||
|
double distanceB = positionDistance(pacmanGridPosition, pelletB);
|
||
|
return distanceA < distanceB;
|
||
|
};
|
||
|
std::sort(pellets.begin(), pellets.end(), pelletSort);
|
||
|
return pellets[0];
|
||
|
}
|
||
|
|
||
|
bool PacManAI::isValidMove(const Move & move) {
|
||
|
const bool isOpposite = (move.direction == oppositeDirection(direction));
|
||
|
if (isOpposite) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
const bool canWalk = isWalkableForPacMan(move.position);
|
||
|
if (!canWalk) {
|
||
|
return false;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
Direction PacManAI::optimalDirection(const std::array<Move, 4> & moves) {
|
||
|
const auto optimalMove = std::min_element(moves.begin(), moves.end(), [](const auto & a, const auto & b) {
|
||
|
return a.distanceToTarget < b.distanceToTarget;
|
||
|
});
|
||
|
|
||
|
const auto & move = *optimalMove;
|
||
|
return move.direction;
|
||
|
}
|