#include "Ghost.hpp" #include #include namespace pacman { Ghost::Ghost(Atlas::Ghost spritesSet, Position startingPosition) : spritesSet(spritesSet), pos(startingPosition), startingPosition(startingPosition) { } void Ghost::frighten() { if (state > State::Scatter) return; direction = oppositeDirection(direction); state = State::Frightened; timeFrighten = 0; } bool Ghost::isFrightened() const { return state == State::Frightened; } bool Ghost::isEyes() const { return state == State::Eyes; } void Ghost::die() { if (state == State::Eyes) return; direction = oppositeDirection(direction); state = State::Eyes; timeFrighten = 0; timeChase = 0; } void Ghost::reset() { pos = startingPosition; } [[nodiscard]] GridPosition Ghost::currentSprite() const { switch (state) { default: return Atlas::ghostSprite(spritesSet, direction, (animationIndex % 2) == 0); case State::Eyes: return Atlas::eyeSprite(direction); case State::Frightened: if (timeFrighten < 3500) return Atlas::initialFrightened(animationIndex); else return Atlas::endingFrightened(animationIndex); } } Position Ghost::position() const { return pos; } GridPosition Ghost::positionInGrid() const { return positionToGridPosition(pos); } void Ghost::update(std::chrono::milliseconds time_delta, const GameState & gameState) { if (state == State::Eyes && isInPen()) state = State::Scatter; if (state == State::Frightened) { timeFrighten += time_delta.count(); if (timeFrighten > 6000) state = State::Scatter; } updateAnimation(time_delta); updatePosition(time_delta, gameState); } bool Ghost::isInPen() const { return pacman::isInPen(positionInGrid()); } void Ghost::updatePosition(std::chrono::milliseconds time_delta, const GameState & gameState) { updateDirection(gameState); double position_delta = (0.004 * time_delta.count()) * speed(gameState); switch (direction) { case Direction::NONE: break; case Direction::LEFT: pos.x -= position_delta; pos.y = round(pos.y); break; case Direction::RIGHT: pos.x += position_delta; pos.y = round(pos.y); break; case Direction::UP: pos.x = round(pos.x); pos.y -= position_delta; break; case Direction::DOWN: pos.x = round(pos.x); pos.y += position_delta; break; } } /* * Each time a ghost finds itself at an intersection, * it picks a target position - the specific target depends on the state * of the ghost and the specific ghost. * * For each 4 cells around the current ghost position the straight-line distance * to the target is calculated (this ignores all obstacles, including walls) * * The ghost then selects among these 4 cells the one with the shortest euclidean distance to the target. * If a cell is a wall or would cause a ghost to move in the opposite direction, the distance to the target * from that cell is considered infinite (due to the shape of the maze, there is always one direction * a ghost can take). * * In the scatter state, each ghost tries to reach an unreachable position outside of the map. * This makes ghosts run in circle around the island at each of the 4 map corner. */ void Ghost::updateDirection(const GameState & gameState) { const auto current_grid_position = positionInGrid(); if (current_grid_position == last_grid_position) return; struct Move { Direction direction; Position position; double distance = std::numeric_limits::infinity(); }; const Position current_position = { double(current_grid_position.x), double(current_grid_position.y) }; const auto [x, y] = current_position; std::array possible_moves = { { Move{ Direction::UP, { x, y - 1 } }, Move{ Direction::LEFT, { x - 1, y } }, Move{ Direction::DOWN, { x, y + 1 } }, Move{ Direction::RIGHT, { x + 1, y } } } }; const Position target_position = target(gameState); for (auto & move : possible_moves) { const bool invalid_position = (move.position.x < 0 || move.position.y < 0); if (invalid_position) continue; const bool opposite_direction = (move.direction == oppositeDirection(direction)); if (opposite_direction) continue; const GridPosition grid_position = { size_t(move.position.x), size_t(move.position.y) }; const bool can_walk = isWalkableForGhost(grid_position, current_grid_position, isEyes()); if (!can_walk) continue; move.distance = std::hypot(move.position.x - target_position.x, move.position.y - target_position.y); } const auto optimal_move = std::min_element(possible_moves.begin(), possible_moves.end(), [](const auto & a, const auto & b) { return a.distance < b.distance; }); auto move = *optimal_move; direction = move.direction; last_grid_position = current_grid_position; } void Ghost::updateAnimation(std::chrono::milliseconds time_delta) { timeForAnimation += time_delta.count(); if (timeForAnimation >= 250) { timeForAnimation = 0; animationIndex = (animationIndex + 1) % 4; } } } // namespace pacman